ﻻ يوجد ملخص باللغة العربية
Consider the case that one observes a single time-series, where at each time t one observes a data record O(t) involving treatment nodes A(t), possible covariates L(t) and an outcome node Y(t). The data record at time t carries information for an (potentially causal) effect of the treatment A(t) on the outcome Y(t), in the context defined by a fixed dimensional summary measure Co(t). We are concerned with defining causal effects that can be consistently estimated, with valid inference, for sequentially randomized experiments without further assumptions. More generally, we consider the case when the (possibly causal) effects can be estimated in a double robust manner, analogue to double robust estimation of effects in the i.i.d. causal inference literature. We propose a general class of averages of conditional (context-specific) causal parameters that can be estimated in a double robust manner, therefore fully utilizing the sequential randomization. We propose a targeted maximum likelihood estimator (TMLE) of these causal parameters, and present a general theorem establishing the asymptotic consistency and normality of the TMLE. We extend our general framework to a number of typically studied causal target parameters, including a sequentially adaptive design within a single unit that learns the optimal treatment rule for the unit over time. Our work opens up robust statistical inference for causal questions based on observing a single time-series on a particular unit.
The current work is motivated by the need for robust statistical methods for precision medicine; as such, we address the need for statistical methods that provide actionable inference for a single unit at any point in time. We aim to learn an optimal
Several novel statistical methods have been developed to estimate large integrated volatility matrices based on high-frequency financial data. To investigate their asymptotic behaviors, they require a sub-Gaussian or finite high-order moment assumpti
We address in this study the problem of learning a summary causal graph on time series with potentially different sampling rates. To do so, we first propose a new temporal mutual information measure defined on a window-based representation of time se
We consider a bivariate time series $(X_t,Y_t)$ that is given by a simple linear autoregressive model. Assuming that the equations describing each variable as a linear combination of past values are considered structural equations, there is a clear m
The spectral gap $gamma$ of a finite, ergodic, and reversible Markov chain is an important parameter measuring the asymptotic rate of convergence. In applications, the transition matrix $P$ may be unknown, yet one sample of the chain up to a fixed ti