ﻻ يوجد ملخص باللغة العربية
The encoding of quantum information in photonic time-bin qubits is apt for long distance quantum communication schemes. In practice, due to technical constraints such as detector response time, or the speed with which co-polarized time-bins can be switched, other encodings, e.g. polarization, are often preferred for operations like state detection. Here, we present the conversion of qubits between polarization and time-bin encodings using a method that is based on an ultrafast optical Kerr shutter and attain efficiencies of 97% and an average fidelity of 0.827+/-0.003 with shutter speeds near 1 ps. Our demonstration delineates an essential requirement for the development of hybrid and high-rate optical quantum networks.
The photonic temporal degree of freedom is one of the most promising platforms for quantum communication over fiber networks and free-space channels. In particular, time-bin states of photons are robust to environmental disturbances, support high-rat
Photonic time bin qubits are well suited to transmission via optical fibres and waveguide circuits. The states take the form $frac{1}{sqrt{2}}(alpha ket{0} + e^{iphi}beta ket{1})$, with $ket{0}$ and $ket{1}$ referring to the early and late time bin r
Time-bin qubits, where information is encoded in a single photon at different times, have been widely used in optical fiber and waveguide based quantum communications. With the recent developments in distributed quantum computation, it is logical to
Quantum logic gates are important for quantum computations and quantum information processing in numerous physical systems. While time-bin qubits are suited for quantum communications over optical fiber, many essential quantum logic gates for them ha
Femtosecond-scale polarization state conversion is experimentally found in optical response of a plasmonic nanograting by means of time-resolved polarimetry. Simultaneous measurements of the Stokes parameters as a function of time with an averaging t