ﻻ يوجد ملخص باللغة العربية
Quantum logic gates are important for quantum computations and quantum information processing in numerous physical systems. While time-bin qubits are suited for quantum communications over optical fiber, many essential quantum logic gates for them have not yet been realized. Here, we demonstrated a controlled-phase (C-Phase) gate for time-bin qubits that uses a 2x2 optical switch based on an electro-optic modulator. A Hong-Ou-Mandel interference measurement showed that the switch could work as a time-dependent beam splitter with a variable spitting ratio. We confirmed that two independent time-bin qubits were entangled as a result of the C-Phase gate operation with the switch.
Time-bin qubits, where information is encoded in a single photon at different times, have been widely used in optical fiber and waveguide based quantum communications. With the recent developments in distributed quantum computation, it is logical to
We propose and experimentally demonstrate a scheme for implementation of a maximally entangling quantum controlled-Z gate between two weakly interacting systems. We conditionally enhance the interqubit coupling by quantum interference. Both before an
We propose a scheme for the generation of hybrid states entangling a single-photon time-bin qubit with a coherent-state qubit encoded on phases. Compared to other reported solutions, time-bin encoding makes hybrid entanglement particularly well adapt
Photonic time bin qubits are well suited to transmission via optical fibres and waveguide circuits. The states take the form $frac{1}{sqrt{2}}(alpha ket{0} + e^{iphi}beta ket{1})$, with $ket{0}$ and $ket{1}$ referring to the early and late time bin r
The photonic temporal degree of freedom is one of the most promising platforms for quantum communication over fiber networks and free-space channels. In particular, time-bin states of photons are robust to environmental disturbances, support high-rat