ﻻ يوجد ملخص باللغة العربية
Time-bin qubits, where information is encoded in a single photon at different times, have been widely used in optical fiber and waveguide based quantum communications. With the recent developments in distributed quantum computation, it is logical to ask whether time-bin encoded qubits may be useful in that context. We have recently realized a time-bin qubit controlled-phase (C-Phase) gate using a 2 X 2 optical switch based on a lithium niobate waveguide, with which we demonstrated the generation of an entangled state. However, the experiment was performed with only a pair of input states, and thus the functionality of the C-Phase gate was not fully verified. In this research, we used quantum process tomography to establish a process fidelity of 97.1%. Furthermore, we demonstrated the controlled-NOT gate operation with a process fidelity greater than 94%. This study confirms that typical two-qubit logic gates used in quantum computational circuits can be implemented with time-bin qubits, and thus it is a significant step forward for realization of distributed quantum computation based on time-bin qubits.
Quantum logic gates are important for quantum computations and quantum information processing in numerous physical systems. While time-bin qubits are suited for quantum communications over optical fiber, many essential quantum logic gates for them ha
Quantum logic gates must perform properly when operating on their standard input basis states, as well as when operating on complex superpositions of these states. Experiments using superconducting qubits have validated the truth table for particular
We employ quantum state and process tomography with time-bin qubits to benchmark a city-wide metropolitan quantum communication system. Over this network, we implement real-time feedback control systems for stabilizing the phase of the time-bin qubit
We propose a method for precision statistical control of quantum processes based on superconductor phase qubits. Using the universal quantum tomography method, we provide a detailed analysis of accuracy of tomography for a 2-qubit gate SQiSW, which a
Quantum state tomography (QST) is an essential tool for characterizing an unknown quantum state. Recently, QST has been performed for entangled qudits based on orbital angular momentum, time-energy uncertainty, and frequency bins. Here, we propose a