ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum process tomography of a controlled-phase gate for time-bin qubits

63   0   0.0 ( 0 )
 نشر من قبل Hsin-Pin Lo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Time-bin qubits, where information is encoded in a single photon at different times, have been widely used in optical fiber and waveguide based quantum communications. With the recent developments in distributed quantum computation, it is logical to ask whether time-bin encoded qubits may be useful in that context. We have recently realized a time-bin qubit controlled-phase (C-Phase) gate using a 2 X 2 optical switch based on a lithium niobate waveguide, with which we demonstrated the generation of an entangled state. However, the experiment was performed with only a pair of input states, and thus the functionality of the C-Phase gate was not fully verified. In this research, we used quantum process tomography to establish a process fidelity of 97.1%. Furthermore, we demonstrated the controlled-NOT gate operation with a process fidelity greater than 94%. This study confirms that typical two-qubit logic gates used in quantum computational circuits can be implemented with time-bin qubits, and thus it is a significant step forward for realization of distributed quantum computation based on time-bin qubits.



قيم البحث

اقرأ أيضاً

Quantum logic gates are important for quantum computations and quantum information processing in numerous physical systems. While time-bin qubits are suited for quantum communications over optical fiber, many essential quantum logic gates for them ha ve not yet been realized. Here, we demonstrated a controlled-phase (C-Phase) gate for time-bin qubits that uses a 2x2 optical switch based on an electro-optic modulator. A Hong-Ou-Mandel interference measurement showed that the switch could work as a time-dependent beam splitter with a variable spitting ratio. We confirmed that two independent time-bin qubits were entangled as a result of the C-Phase gate operation with the switch.
Quantum logic gates must perform properly when operating on their standard input basis states, as well as when operating on complex superpositions of these states. Experiments using superconducting qubits have validated the truth table for particular implementations of e.g. the controlled-NOT gate [1,2], but have not fully characterized gate operation for arbitrary superpositions of input states. Here we demonstrate the use of quantum process tomography (QPT) [3,4] to fully characterize the performance of a universal entangling gate between two superconducting quantum bits. Process tomography permits complete gate analysis, but requires precise preparation of arbitrary input states, control over the subsequent qubit interaction, and simultaneous single-shot measurement of the output states. We use QPT to measure the fidelity of the entangling gate and to quantify the decoherence mechanisms affecting the gate performance. In addition to demonstrating a promising fidelity, our entangling gate has a on/off ratio of 300, a level of adjustable coupling that will become a requirement for future high-fidelity devices. This is the first solid-state demonstration of QPT in a two-qubit system, as solid-state process tomography has previously only been demonstrated with single qubits [5,6].
We employ quantum state and process tomography with time-bin qubits to benchmark a city-wide metropolitan quantum communication system. Over this network, we implement real-time feedback control systems for stabilizing the phase of the time-bin qubit s, and obtain a 99.3% quantum process fidelity to the ideal channel, indicating the high quality of the whole quantum communication system. This allows us to implement field trial of high performance quantum key distribution using coherent one way protocol with average quantum bit error rate and visibility of 0.25% and 99.2% during 12 hours over 61 km. Our results pave the way for the high-performance quantum network with metropolitan fibers.
We propose a method for precision statistical control of quantum processes based on superconductor phase qubits. Using the universal quantum tomography method, we provide a detailed analysis of accuracy of tomography for a 2-qubit gate SQiSW, which a rises due to capacitive coupling between qubits. The developed approach could be successfully applied for quality and efficiency problems of superconductor quantum information technologies.
Quantum state tomography (QST) is an essential tool for characterizing an unknown quantum state. Recently, QST has been performed for entangled qudits based on orbital angular momentum, time-energy uncertainty, and frequency bins. Here, we propose a QST for time-bin qudits, with which the number of measurement settings scales linearly with dimension $d$. Using the proposed scheme, we performed QST for a four-dimensional time-bin maximally entangled state with 16 measurement settings. We successfully reconstructed the density matrix of the entangled qudits, with which the average fidelity of the state was calculated to be 0.950.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا