ﻻ يوجد ملخص باللغة العربية
In this paper new tests for the independence of two high-dimensional vectors are investigated. We consider the case where the dimension of the vectors increases with the sample size and propose multivariate analysis of variance-type statistics for the hypothesis of a block diagonal covariance matrix. The asymptotic properties of the new test statistics are investigated under the null hypothesis and the alternative hypothesis using random matrix theory. For this purpose we study the weak convergence of linear spectral statistics of central and (conditionally) non-central Fisher matrices. In particular, a central limit theorem for linear spectral statistics of large dimensional (conditionally) non-central Fisher matrices is derived which is then used to analyse the power of the tests under the alternative. The theoretical results are illustrated by means of a simulation study where we also compare the new tests with several alternative, in particular with the commonly used corrected likelihood ratio test. It is demonstrated that the latter test does not keep its nominal level, if the dimension of one sub-vector is relatively small compared to the dimension of the other sub-vector. On the other hand the tests proposed in this paper provide a reasonable approximation of the nominal level in such situations. Moreover, we observe that one of the proposed tests is most powerful under a variety of correlation scenarios.
Consider a normal vector $mathbf{z}=(mathbf{x},mathbf{y})$, consisting of two sub-vectors $mathbf{x}$ and $mathbf{y}$ with dimensions $p$ and $q$ respectively. With $n$ independent observations of $mathbf{z}$ at hand, we study the correlation between
Dependence measures based on reproducing kernel Hilbert spaces, also known as Hilbert-Schmidt Independence Criterion and denoted HSIC, are widely used to statistically decide whether or not two random vectors are dependent. Recently, non-parametric H
Consider a random vector $mathbf{y}=mathbf{Sigma}^{1/2}mathbf{x}$, where the $p$ elements of the vector $mathbf{x}$ are i.i.d. real-valued random variables with zero mean and finite fourth moment, and $mathbf{Sigma}^{1/2}$ is a deterministic $ptimes
The G-normal distribution was introduced by Peng [2007] as the limiting distribution in the central limit theorem for sublinear expectation spaces. Equivalently, it can be interpreted as the solution to a stochastic control problem where we have a se
In this work we construct an optimal shrinkage estimator for the precision matrix in high dimensions. We consider the general asymptotics when the number of variables $prightarrowinfty$ and the sample size $nrightarrowinfty$ so that $p/nrightarrow ci