ﻻ يوجد ملخص باللغة العربية
Dependence measures based on reproducing kernel Hilbert spaces, also known as Hilbert-Schmidt Independence Criterion and denoted HSIC, are widely used to statistically decide whether or not two random vectors are dependent. Recently, non-parametric HSIC-based statistical tests of independence have been performed. However, these tests lead to the question of the choice of the kernels associated to the HSIC. In particular, there is as yet no method to objectively select specific kernels with theoretical guarantees in terms of first and second kind errors. One of the main contributions of this work is to develop a new HSIC-based aggregated procedure which avoids such a kernel choice, and to provide theoretical guarantees for this procedure. To achieve this, we first introduce non-asymptotic single tests based on Gaussian kernels with a given bandwidth, which are of prescribed level $alpha in (0,1)$. From a theoretical point of view, we upper-bound their uniform separation rate of testing over Sobolev and Nikolskii balls. Then, we aggregate several single tests, and obtain similar upper-bounds for the uniform separation rate of the aggregated procedure over the same regularity spaces. Another main contribution is that we provide a lower-bound for the non-asymptotic minimax separation rate of testing over Sobolev balls, and deduce that the aggregated procedure is adaptive in the minimax sense over such regularity spaces. Finally, from a practical point of view, we perform numerical studies in order to assess the efficiency of our aggregated procedure and compare it to existing independence tests in the literature.
Measuring conditional independence is one of the important tasks in statistical inference and is fundamental in causal discovery, feature selection, dimensionality reduction, Bayesian network learning, and others. In this work, we explore the connect
In this paper new tests for the independence of two high-dimensional vectors are investigated. We consider the case where the dimension of the vectors increases with the sample size and propose multivariate analysis of variance-type statistics for th
Nonparametric latent structure models provide flexible inference on distinct, yet related, groups of observations. Each component of a vector of $d ge 2$ random measures models the distribution of a group of exchangeable observations, while their dep
We investigate the problem of testing whether $d$ random variables, which may or may not be continuous, are jointly (or mutually) independent. Our method builds on ideas of the two variable Hilbert-Schmidt independence criterion (HSIC) but allows for
This paper proposes a new statistic to test independence between two high dimensional random vectors ${mathbf{X}}:p_1times1$ and ${mathbf{Y}}:p_2times1$. The proposed statistic is based on the sum of regularized sample canonical correlation coefficie