ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce a set of block factor-width-two matrices, which is a generalisation of factor-width-two matrices and is a subset of positive semidefinite matrices. The set of block factor-width-two matrices is a proper cone and we compute a closed-form expression for its dual cone. We use these cones to build hierarchies of inner and outer approximations of the cone of positive semidefinite matrices. The main feature of these cones is that they enable a decomposition of a large semidefinite constraint into a number of smaller semidefinite constraints. As the main application of these classes of matrices, we envision large-scale semidefinite feasibility optimisation programs including sum-of-squares (SOS) programs. We present numerical examples from SOS optimisation showcasing the properties of this decomposition.
Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In th
Chordal and factor-width decomposition methods for semidefinite programming and polynomial optimization have recently enabled the analysis and control of large-scale linear systems and medium-scale nonlinear systems. Chordal decomposition exploits th
We give the first approximation algorithm for mixed packing and covering semidefinite programs (SDPs) with polylogarithmic dependence on width. Mixed packing and covering SDPs constitute a fundamental algorithmic primitive with recent applications in
In this paper we examine a symmetric tensor decomposition problem, the Gramian decomposition, posed as a rank minimization problem. We study the relaxation of the problem and consider cases when the relaxed solution is a solution to the original prob
In this paper we give an algorithm to round the floating point output of a semidefinite programming solver to a solution over the rationals or a quadratic extension of the rationals. We apply this to get sharp bounds for packing problems, and we use