ترغب بنشر مسار تعليمي؟ اضغط هنا

Block Factor-Width-Two Matrices in Semidefinite Programming

162   0   0.0 ( 0 )
 نشر من قبل Aivar Sootla
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce a set of block factor-width-two matrices, which is a generalisation of factor-width-two matrices and is a subset of positive semidefinite matrices. The set of block factor-width-two matrices is a proper cone and we compute a closed-form expression for its dual cone. We use these cones to build hierarchies of inner and outer approximations of the cone of positive semidefinite matrices. The main feature of these cones is that they enable a decomposition of a large semidefinite constraint into a number of smaller semidefinite constraints. As the main application of these classes of matrices, we envision large-scale semidefinite feasibility optimisation programs including sum-of-squares (SOS) programs. We present numerical examples from SOS optimisation showcasing the properties of this decomposition.



قيم البحث

اقرأ أيضاً

Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In th is paper, we introduce a new notion of emph{block factor-width-two matrices} and build a new hierarchy of inner and outer approximations of the cone of positive semidefinite (PSD) matrices. This notion is a block extension of the standard factor-width-two matrices, and allows for an improved inner-approximation of the PSD cone. In the context of SOS optimization, this leads to a block extension of the emph{scaled diagonally dominant sum-of-squares (SDSOS)} polynomials. By varying a matrix partition, the notion of block factor-width-two matrices can balance a trade-off between the computation scalability and solution quality for solving semidefinite and SOS optimization. Numerical experiments on large-scale instances confirm our theoretical findings.
Chordal and factor-width decomposition methods for semidefinite programming and polynomial optimization have recently enabled the analysis and control of large-scale linear systems and medium-scale nonlinear systems. Chordal decomposition exploits th e sparsity of semidefinite matrices in a semidefinite program (SDP), in order to formulate an equivalent SDP with smaller semidefinite constraints that can be solved more efficiently. Factor-width decompositions, instead, relax or strengthen SDPs with dense semidefinite matrices into more tractable problems, trading feasibility or optimality for lower computational complexity. This article reviews recent advances in large-scale semidefinite and polynomial optimization enabled by these two types of decomposition, highlighting connections and differences between them. We also demonstrate that chordal and factor-width decompositions allow for significant computational savings on a range of classical problems from control theory, and on more recent problems from machine learning. Finally, we outline possible directions for future research that have the potential to facilitate the efficient optimization-based study of increasingly complex large-scale dynamical systems.
We give the first approximation algorithm for mixed packing and covering semidefinite programs (SDPs) with polylogarithmic dependence on width. Mixed packing and covering SDPs constitute a fundamental algorithmic primitive with recent applications in combinatorial optimization, robust learning, and quantum complexity. The current approximate solvers for positive semidefinite programming can handle only pure packing instances, and technical hurdles prevent their generalization to a wider class of positive instances. For a given multiplicative accuracy of $epsilon$, our algorithm takes $O(log^3(ndrho) cdot epsilon^{-3})$ parallelizable iterations, where $n$, $d$ are dimensions of the problem and $rho$ is a width parameter of the instance, generalizing or improving all previous parallel algorithms in the positive linear and semidefinite programming literature. When specialized to pure packing SDPs, our algorithms iteration complexity is $O(log^2 (nd) cdot epsilon^{-2})$, a slight improvement and derandomization of the state-of-the-art (Allen-Zhu et. al. 16, Peng et. al. 16, Wang et. al. 15). For a wide variety of structured instances commonly found in applications, the iterations of our algorithm run in nearly-linear time. In doing so, we give matrix analytic techniques for overcoming obstacles that have stymied prior approaches to this open problem, as stated in past works (Peng et. al. 16, Mahoney et. al. 16). Crucial to our analysis are a simplification of existing algorithms for mixed positive linear programs, achieved by removing an asymmetry caused by modifying covering constraints, and a suite of matrix inequalities whose proofs are based on analyzing the Schur complements of matrices in a higher dimension. We hope that both our algorithm and techniques open the door to improved solvers for positive semidefinite programming, as well as its applications.
119 - Erik Skau , Agnes Szanto 2017
In this paper we examine a symmetric tensor decomposition problem, the Gramian decomposition, posed as a rank minimization problem. We study the relaxation of the problem and consider cases when the relaxed solution is a solution to the original prob lem. In some instances of tensor rank and order, we prove generically that the solution to the relaxation will be optimal in the original. In other cases, we present interesting examples and approaches that demonstrate the intricacy of this problem.
In this paper we give an algorithm to round the floating point output of a semidefinite programming solver to a solution over the rationals or a quadratic extension of the rationals. We apply this to get sharp bounds for packing problems, and we use these sharp bounds to prove that certain optimal packing configurations are unique up to rotations. In particular, we show that the configuration coming from the $mathsf{E}_8$ root lattice is the unique optimal code with minimal angular distance $pi/3$ on the hemisphere in $mathbb R^8$, and we prove that the three-point bound for the $(3, 8, vartheta)$-spherical code, where $vartheta$ is such that $cos vartheta = (2sqrt{2}-1)/7$, is sharp by rounding to $mathbb Q[sqrt{2}]$. We also use our machinery to compute sharp upper bounds on the number of spheres that can be packed into a larger sphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا