ﻻ يوجد ملخص باللغة العربية
Given all (finite) moments of two measures $mu$ and $lambda$ on $R^n$, we provide a numerical scheme to obtain the Lebesgue decomposition $mu= u+psi$ with $ ulllambda$ and $psiperplambda$. When$ u$ has a density in $L_infty(lambda)$ then we obtain two sequences of finite moments vectorsof increasing size (the number of moments) which converge to the moments of $ u$ and $psi$ respectively, as the number of moments increases. Importantly, {it no} `a priori knowledge on the supports of $mu, u$ and $psi$ is required.
In this paper we examine a symmetric tensor decomposition problem, the Gramian decomposition, posed as a rank minimization problem. We study the relaxation of the problem and consider cases when the relaxed solution is a solution to the original prob
The multiple-input multiple-output (MIMO) detection problem, a fundamental problem in modern digital communications, is to detect a vector of transmitted symbols from the noisy outputs of a fading MIMO channel. The maximum likelihood detector can be
For an ideal I with a positive dimensional real variety, based on moment relaxations, we study how to compute a Pommaret basis which is simultaneously a Groebner basis of an ideal J generated by the kernel of a truncated moment matrix and nesting bet
We study the problem of maximizing the geometric mean of $d$ low-degree non-negative forms on the real or complex sphere in $n$ variables. We show that this highly non-convex problem is NP-hard even when the forms are quadratic and is equivalent to o
We show that the recent hierarchy of semidefinite programming relaxations based on non-commutative polynomial optimization and reduced density matrix variational methods exhibits an interesting paradox when applied to the bosonic case: even though it