ﻻ يوجد ملخص باللغة العربية
Support vector regression (SVR) is one of the most popular machine learning algorithms aiming to generate the optimal regression curve through maximizing the minimal margin of selected training samples, i.e., support vectors. Recent researchers reveal that maximizing the margin distribution of whole training dataset rather than the minimal margin of a few support vectors, is prone to achieve better generalization performance. However, the margin distribution support vector regression machines suffer difficulties resulted from solving a non-convex quadratic optimization, compared to the margin distribution strategy for support vector classification, This paper firstly proposes a maximal margin distribution model for SVR(MMD-SVR), then implementing coupled constrain factor to convert the non-convex quadratic optimization to a convex problem with linear constrains, which enhance the training feasibility and efficiency for SVR to derived from maximizing the margin distribution. The theoretical and empirical analysis illustrates the superiority of MMD-SVR. In addition, numerical experiments show that MMD-SVR could significantly improve the accuracy of prediction and generate more smooth regression curve with better generalization compared with the classic SVR.
We present an improved algorithm for properly learning convex polytopes in the realizable PAC setting from data with a margin. Our learning algorithm constructs a consistent polytope as an intersection of about $t log t$ halfspaces with margins in ti
Insurance industry is one of the most vulnerable sectors to climate change. Assessment of future number of claims and incurred losses is critical for disaster preparedness and risk management. In this project, we study the effect of precipitation on
In this work we propose to fit a sparse logistic regression model by a weakly convex regularized nonconvex optimization problem. The idea is based on the finding that a weakly convex function as an approximation of the $ell_0$ pseudo norm is able to
In this paper, we reformulate the forest representation learning approach as an additive model which boosts the augmented feature instead of the prediction. We substantially improve the upper bound of generalization gap from $mathcal{O}(sqrtfrac{ln m
A convex optimization model predicts an output from an input by solving a convex optimization problem. The class of convex optimization models is large, and includes as special cases many well-known models like linear and logistic regression. We prop