ترغب بنشر مسار تعليمي؟ اضغط هنا

Order-disorder transition in active nematic: A lattice model study

82   0   0.0 ( 0 )
 نشر من قبل Rakesh Das
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a lattice model for active nematic composed of self-propelled apolar particles,study its different ordering states in the density-temperature parameter space, and compare with the corresponding equilibrium model. The active particles interact with their neighbours within the framework of the Lebwohl-Lasher model, and move anisotropically along their orientation to an unoccupied nearest neighbour lattice site. An interplay of the activity, thermal fluctuations and density gives rise distinct states in the system. For a fixed temperature, the active nematic shows a disordered isotropic state, a locally ordered inhomogeneous mixed state, and bistability between the inhomogeneous mixed and a homogeneous globally ordered state in different density regime. In the low temperature regime, the isotropic to the inhomogeneous mixed state transition occurs with a jump in the order parameter at a density less than the corresponding equilibrium disorder-order transition density. Our analytical calculations justify the shift in the transition density and the jump in the order parameter. We construct the phase diagram of the active nematic in the density-temperature plane.



قيم البحث

اقرأ أيضاً

Using a microscopic model of interacting polar biofilaments and motor proteins, we characterize the phase diagram of both homogeneous and inhomogeneous states in terms of experimental parameters. The polarity of motor clusters is key in determining t he organization of the filaments in homogeneous isotropic, polarized and nematic states, while motor-induced bundling yields spatially inhomogeneous structures.
138 - H. Chamati , S. Romano 2014
At low temperatures, some lattice spin models with simple ferromagnetic or antiferromagnetic interactions (for example nearest-neighbour interaction being isotropic in spin space on a bipartite three-dimensional lattice) produce orientationally order ed phases exhibiting nematic (second--rank) order, in addition to the primary first-rank one; on the other hand, in the Literature, they have been rather seldom investigated in this respect. Here we study the thermodynamic properties of a three-dimensional model with dipolar-like interaction. Its ground state is found to exhibit full orientational order with respect to a suitably defined staggered magnetization (polarization), but no nematic second-rank order. Extensive Monte Carlo simulations, in conjunction with Finite-Size Scaling analysis have been used for characterizing its critical behaviour; on the other hand, it has been found that nematic order does indeed set in at low temperatures, via a mechanism of order by disorder.
We study numerically the rheological properties of a slab of active gel close o the isotropic-nematic transition. The flow behavior shows strong dependence on sample size, boundary conditions, and on the bulk constitutive curve, which, on entering th e nematic phase, acquires an activity-induced discontinuity at the origin. The precursor of this within the metastable isotropic phase for contractile systems ({em e.g.,} actomyosin gels) gives a viscosity divergence; its counterpart for extensile ({em e.g.,} {em B. subtilis}) suspensions admits instead a shear-banded flow with zero apparent viscosity.
We study incompressible systems of motile particles with alignment interactions. Unlike their compressible counterparts, in which the order-disorder (i.e., moving to static) transition, tuned by either noise or number density, is discontinuous, in in compressible systems this transition can be continuous, and belongs to a new universality class. We calculate the critical exponents to $O(epsilon)$in an $epsilon=4-d$ expansion, and derive two exact scaling relations. This is the first analytic treatment of a phase transition in a new universality class in an active system.
181 - Marc Durand 2019
Many systems, including biological tissues and foams, are made of highly packed units having high deformability but low compressibility. At two dimensions, these systems offer natural tesselations of plane with fixed density, in which transitions fro m ordered to disordered patterns are often observed, in both directions. Using a modified Cellular Potts Model algorithm that allows rapid thermalization of extensive systems, we numerically explore the order-disorder transition of monodisperse, two-dimensional cellular systems driven by thermal agitation. We show that the transition follows most of the predictions of Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory developed for melting of 2D solids, extending the validity of this theory to systems with many-body interactions. In particular, we show the existence of an intermediate hexatic phase, which preserves the orientational order of the regular hexagonal tiling, but looses its positional order. In addition to shedding light on the structural changes observed in experimental systems, our study shows that soft cellular systems offer macroscopic systems in which KTHNY melting scenario can be explored, in the continuation of Braggs experiments on bubble rafts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا