ﻻ يوجد ملخص باللغة العربية
Many systems, including biological tissues and foams, are made of highly packed units having high deformability but low compressibility. At two dimensions, these systems offer natural tesselations of plane with fixed density, in which transitions from ordered to disordered patterns are often observed, in both directions. Using a modified Cellular Potts Model algorithm that allows rapid thermalization of extensive systems, we numerically explore the order-disorder transition of monodisperse, two-dimensional cellular systems driven by thermal agitation. We show that the transition follows most of the predictions of Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory developed for melting of 2D solids, extending the validity of this theory to systems with many-body interactions. In particular, we show the existence of an intermediate hexatic phase, which preserves the orientational order of the regular hexagonal tiling, but looses its positional order. In addition to shedding light on the structural changes observed in experimental systems, our study shows that soft cellular systems offer macroscopic systems in which KTHNY melting scenario can be explored, in the continuation of Braggs experiments on bubble rafts.
We study incompressible systems of motile particles with alignment interactions. Unlike their compressible counterparts, in which the order-disorder (i.e., moving to static) transition, tuned by either noise or number density, is discontinuous, in in
We report on thermodynamic and optical measurements of the condensation process of $^4$He in three silica aerogels of different microstructures. For the two base-catalysed aerogels, the temperature dependence of the shape of adsorption isotherms and
We establish an explicit data-driven criterion for identifying the solid-liquid transition of two-dimensional self-propelled colloidal particles in the far from equilibrium parameter regime, where the transition points predicted by different conventi
We consider an off-lattice liquid crystal pair potential in strictly two dimensions. The potential is purely repulsive and short-ranged. Nevertheless, by means of a single parameter in the potential, the system is shown to undergo a first-order phase
Motivated by recent neutron scattering experiments, we derive and study an effective pseudo-dipolar spin-1/2 model for the XY pyrochlore antiferromagnet Er2Ti2O7. While a bond-dependent in-plane exchange anisotropy removes any continuous symmetry, it