ﻻ يوجد ملخص باللغة العربية
Brain-computer interfaces (BCIs) can provide an alternative means of communication for individuals with severe neuromuscular limitations. The P300-based BCI speller relies on eliciting and detecting transient event-related potentials (ERPs) in electroencephalography (EEG) data, in response to a user attending to rarely occurring target stimuli amongst a series of non-target stimuli. However, in most P300 speller implementations, the stimuli to be presented are randomly selected from a limited set of options and stimulus selection and presentation are not optimized based on previous user data. In this work, we propose a data-driven method for stimulus selection based on the expected discrimination gain metric. The data-driven approach selects stimuli based on previously observed stimulus responses, with the aim of choosing a set of stimuli that will provide the most information about the users intended target character. Our approach incorporates knowledge of physiological and system constraints imposed due to real-time BCI implementation. Simulations were performed to compare our stimulus selection approach to the row-column paradigm, the conventional stimulus selection method for P300 spellers. Results from the simulations demonstrated that our adaptive stimulus selection approach has the potential to significantly improve performance from the conventional method: up to 34% improvement in accuracy and 43% reduction in the mean number of stimulus presentations required to spell a character in a 72-character grid. In addition, our greedy approach to stimulus selection provides the flexibility to accommodate design constraints.
Objective: Amyotrophic lateral sclerosis (ALS) is a rare disease, but is also one of the most common motor neuron diseases, and people of all races and ethnic backgrounds are affected. There is currently no cure. Brain computer interfaces (BCIs) can
The human brain provides a range of functions such as expressing emotions, controlling the rate of breathing, etc., and its study has attracted the interest of scientists for many years. As machine learning models become more sophisticated, and bio-m
We describe the experimental procedures for a dataset that we have made publicly available at https://doi.org/10.5281/zenodo.1494163 in mat and csv formats. This dataset contains electroencephalographic (EEG) recordings of 24 subjects doing a visual
Brain Electroencephalography (EEG) classification is widely applied to analyze cerebral diseases in recent years. Unfortunately, invalid/noisy EEGs degrade the diagnosis performance and most previously developed methods ignore the necessity of EEG se
We describe the experimental procedures for a dataset that we have made publicly available at https://doi.org/10.5281/zenodo.2649006 in mat and csv formats. This dataset contains electroencephalographic (EEG) recordings of 25 subjects testing the Bra