ترغب بنشر مسار تعليمي؟ اضغط هنا

Attention Patterns Detection using Brain Computer Interfaces

70   0   0.0 ( 0 )
 نشر من قبل Felix Hamza-Lup
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The human brain provides a range of functions such as expressing emotions, controlling the rate of breathing, etc., and its study has attracted the interest of scientists for many years. As machine learning models become more sophisticated, and bio-metric data becomes more readily available through new non-invasive technologies, it becomes increasingly possible to gain access to interesting biometric data that could revolutionize Human-Computer Interaction. In this research, we propose a method to assess and quantify human attention levels and their effects on learning. In our study, we employ a brain computer interface (BCI) capable of detecting brain wave activity and displaying the corresponding electroencephalograms (EEG). We train recurrent neural networks (RNNS) to identify the type of activity an individual is performing.



قيم البحث

اقرأ أيضاً

Brain Computer Interface technologies are popular methods of communication between the human brain and external devices. One of the most popular approaches to BCI is Motor Imagery. In BCI applications, the ElectroEncephaloGraphy is a very popular mea surement for brain dynamics because of its non-invasive nature. Although there is a high interest in the BCI topic, the performance of existing systems is still far from ideal, due to the difficulty of performing pattern recognition tasks in EEG signals. BCI systems are composed of a wide range of components that perform signal pre-processing, feature extraction and decision making. In this paper, we define a BCI Framework, named Enhanced Fusion Framework, where we propose three different ideas to improve the existing MI-based BCI frameworks. Firstly, we include aan additional pre-processing step of the signal: a differentiation of the EEG signal that makes it time-invariant. Secondly, we add an additional frequency band as feature for the system and we show its effect on the performance of the system. Finally, we make a profound study of how to make the final decision in the system. We propose the usage of both up to six types of different classifiers and a wide range of aggregation functions (including classical aggregations, Choquet and Sugeno integrals and their extensions and overlap functions) to fuse the information given by the considered classifiers. We have tested this new system on a dataset of 20 volunteers performing motor imagery-based brain-computer interface experiments. On this dataset, the new system achieved a 88.80% of accuracy. We also propose an optimized version of our system that is able to obtain up to 90,76%. Furthermore, we find that the pair Choquet/Sugeno integrals and overlap functions are the ones providing the best results.
Brain-computer interfaces (BCIs) can provide an alternative means of communication for individuals with severe neuromuscular limitations. The P300-based BCI speller relies on eliciting and detecting transient event-related potentials (ERPs) in electr oencephalography (EEG) data, in response to a user attending to rarely occurring target stimuli amongst a series of non-target stimuli. However, in most P300 speller implementations, the stimuli to be presented are randomly selected from a limited set of options and stimulus selection and presentation are not optimized based on previous user data. In this work, we propose a data-driven method for stimulus selection based on the expected discrimination gain metric. The data-driven approach selects stimuli based on previously observed stimulus responses, with the aim of choosing a set of stimuli that will provide the most information about the users intended target character. Our approach incorporates knowledge of physiological and system constraints imposed due to real-time BCI implementation. Simulations were performed to compare our stimulus selection approach to the row-column paradigm, the conventional stimulus selection method for P300 spellers. Results from the simulations demonstrated that our adaptive stimulus selection approach has the potential to significantly improve performance from the conventional method: up to 34% improvement in accuracy and 43% reduction in the mean number of stimulus presentations required to spell a character in a 72-character grid. In addition, our greedy approach to stimulus selection provides the flexibility to accommodate design constraints.
395 - Erwan Vaineau 2019
We describe the experimental procedures for a dataset that we have made publicly available at https://doi.org/10.5281/zenodo.1494163 in mat and csv formats. This dataset contains electroencephalographic (EEG) recordings of 24 subjects doing a visual P300 Brain-Computer Interface experiment on PC. The visual P300 is an event-related potential elicited by visual stimulation, peaking 240-600 ms after stimulus onset. The experiment was designed in order to compare the use of a P300-based brain-computer interface on a PC with and without adaptive calibration using Riemannian geometry. The brain-computer interface is based on electroencephalography (EEG). EEG data were recorded thanks to 16 electrodes. Data were recorded during an experiment taking place in the GIPSA-lab, Grenoble, France, in 2013 (Congedo, 2013). Python code for manipulating the data is available at https://github.com/plcrodrigues/py.BI.EEG.2013-GIPSA. The ID of this dataset is BI.EEG.2013-GIPSA.
Objective: Previous works using a visual P300-based speller have reported an improvement modifying the shape or colour of the presented stimulus. However, the effects of both blended factors have not been yet studied. Thus, the aim of the present wor k was to study both factors and assess the interaction between them. Method: Fifteen naive participants tested four different spellers in a calibration and online task. All spellers were similar except the employed illumination of the target stimulus: white letters, white blocks, coloured letters, and coloured blocks. Results: The block-shaped conditions offered an improvement versus the letter-shaped conditions in the calibration (accuracy) and online (accuracy and correct commands per minute) tasks. Analysis of the P300 waveform showed a larger difference between target and no target stimulus waveforms for the block-shaped conditions versus the letter-shaped. The hypothesis regarding the colour heterogeneity of the stimuli was not found at any level of the analysis. Conclusion: The use of block-shaped illumination demonstrated a better performance than the standard letter-shaped flashing stimuli in classification performance, correct commands per minute, and P300 waveform.
141 - Zhe Sun , Zihao Huang , Feng Duan 2020
Brain-computer interface (BCI) technologies have been widely used in many areas. In particular, non-invasive technologies such as electroencephalography (EEG) or near-infrared spectroscopy (NIRS) have been used to detect motor imagery, disease, or me ntal state. It has been already shown in literature that the hybrid of EEG and NIRS has better results than their respective individual signals. The fusion algorithm for EEG and NIRS sources is the key to implement them in real-life applications. In this research, we propose three fusion methods for the hybrid of the EEG and NIRS-based brain-computer interface system: linear fusion, tensor fusion, and $p$th-order polynomial fusion. Firstly, our results prove that the hybrid BCI system is more accurate, as expected. Secondly, the $p$th-order polynomial fusion has the best classification results out of the three methods, and also shows improvements compared with previous studies. For a motion imagery task and a mental arithmetic task, the best detection accuracy in previous papers were 74.20% and 88.1%, whereas our accuracy achieved was 77.53% and 90.19% . Furthermore, unlike complex artificial neural network methods, our proposed methods are not as computationally demanding.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا