ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous use of ERP-based BCIs with different visual angles in ALS patients

86   0   0.0 ( 0 )
 نشر من قبل Jing Jin
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Objective: Amyotrophic lateral sclerosis (ALS) is a rare disease, but is also one of the most common motor neuron diseases, and people of all races and ethnic backgrounds are affected. There is currently no cure. Brain computer interfaces (BCIs) can establish a communication channel directly between the brain and an external device by recognizing brain activities that reflect user intent. Therefore, this technology could help ALS patients in promoting functional independence through BCI-based speller systems and motor assistive devices. Methods: In this paper, two kinds of ERP-based speller systems were tested on 18 ALS patients to: (1) assess performance when they spelled 42 characters online continuously, without a break; and (2) to compare performance between a matrix-based speller paradigm (MS-P, mean visual angle 6 degree) and a new speller paradigm that used a larger visual angle called the large visual angle speller paradigm (LS-P, mean visual angle 8 degree). Results: Although results showed that there were no significant differences between the two paradigms in accuracy trend over continuous use (p>0.05), the fatigue during the LS-P condition was significantly lower than that of MS-P (p<0.05). Results also showed that continuous use slightly reduced the performance of this ERP-based BCI. Conclusion: 15 subjects obtained higher than 80% feedback accuracy (online output accuracy) and 9 subjects obtained higher than 90% feedback accuracy in one of the two paradigms, thus validating the BCI approaches in this study. Significance: Most ALS subjects in this study could spell effectively after continuous use of an ERP-based BCI. The new LS-P display may be easier for subjects to use, resulting in lower fatigue.



قيم البحث

اقرأ أيضاً

Brain-computer interfaces (BCIs) can provide an alternative means of communication for individuals with severe neuromuscular limitations. The P300-based BCI speller relies on eliciting and detecting transient event-related potentials (ERPs) in electr oencephalography (EEG) data, in response to a user attending to rarely occurring target stimuli amongst a series of non-target stimuli. However, in most P300 speller implementations, the stimuli to be presented are randomly selected from a limited set of options and stimulus selection and presentation are not optimized based on previous user data. In this work, we propose a data-driven method for stimulus selection based on the expected discrimination gain metric. The data-driven approach selects stimuli based on previously observed stimulus responses, with the aim of choosing a set of stimuli that will provide the most information about the users intended target character. Our approach incorporates knowledge of physiological and system constraints imposed due to real-time BCI implementation. Simulations were performed to compare our stimulus selection approach to the row-column paradigm, the conventional stimulus selection method for P300 spellers. Results from the simulations demonstrated that our adaptive stimulus selection approach has the potential to significantly improve performance from the conventional method: up to 34% improvement in accuracy and 43% reduction in the mean number of stimulus presentations required to spell a character in a 72-character grid. In addition, our greedy approach to stimulus selection provides the flexibility to accommodate design constraints.
Motor imagery (MI) is a mental representation of motor behavior that has been widely used as a control method for a brain-computer interface (BCI), allowing communication for the physically impaired. The performance of MI based BCI mainly depends on the subjects ability to self-modulate EEG signals. Proper training can help naive subjects learn to modulate brain activity proficiently. However, training subjects typically involves abstract motor tasks and is time-consuming. To improve the performance of naive subjects during motor imagery, a novel paradigm was presented that would guide naive subjects to modulate brain activity effectively. In this new paradigm, pictures of the left or right hand were used as cues for subjects to finish the motor imagery task. Fourteen healthy subjects (11 male, aged 22-25 years, mean 23.6+/-1.16) participated in this study. The task was to imagine writing a Chinese character. Specifically, subjects could imagine hand movements following the sequence of writing strokes in the Chinese character. This paradigm was meant to find an effective and familiar action for most Chinese people, to provide them with a specific, extensively practiced task and help them modulate brain activity. Results showed that the writing task paradigm yielded significantly better performance than the traditional arrow paradigm (p<0.001). Questionnaire replies indicated that most subjects thought the new paradigm was easier and more comfortable. The proposed new motor imagery paradigm could guide subjects to help them modulate brain activity effectively. Results showed that there were significant improvements using new paradigm, both in classification accuracy and usability.
We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stab ility facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.
The study reports the performance of Parkinsons disease (PD) patients to operate Motor-Imagery based Brain-Computer Interface (MI-BCI) and compares three selected pre-processing and classification approaches. The experiment was conducted on 7 PD pati ents who performed a total of 14 MI-BCI sessions targeting lower extremities. EEG was recorded during the initial calibration phase of each session, and the specific BCI models were produced by using Spectrally weighted Common Spatial Patterns (SpecCSP), Source Power Comodulation (SPoC) and Filter-Bank Common Spatial Patterns (FBCSP) methods. The results showed that FBCSP outperformed SPoC in terms of accuracy, and both SPoC and SpecCSP in terms of the false-positive ratio. The study also demonstrates that PD patients were capable of operating MI-BCI, although with lower accuracy.
246 - Bradly Alicea 2011
The relationship between physiological systems and modern electromechanical technologies is fast becoming intimate with high degrees of complex interaction. It can be argued that muscular function, limb movements, and touch perception serve superviso ry functions for movement control in motion and touch-based (e.g. manipulable) devices/interfaces and human-machine interfaces in general. To get at this hypothesis requires the use of novel techniques and analyses which demonstrate the multifaceted and regulatory role of adaptive physiological processes in these interactions. Neuromechanics is an approach that unifies the role of physiological function, motor performance, and environmental effects in determining human performance. A neuromechanical perspective will be used to explain the effect of environmental fluctuations on supervisory mechanisms, which leads to adaptive physiological responses. Three experiments are presented using two different types of virtual environment that allowed for selective switching between two sets of environmental forces. This switching was done in various ways to maximize the variety of results. Electromyography (EMG) and kinematic information contributed to the development of human performance-related measures. Both descriptive and specialized analyses were conducted: peak amplitude analysis, loop trace analysis, and the analysis of unmatched muscle power. Results presented here provide a window into performance under a range of conditions. These analyses also demonstrated myriad consequences for force-related fluctuations on dynamic physiological regulation. The findings presented here could be applied to the dynamic control of touch-based and movement-sensitive human-machine systems. In particular, the design of systems such as human-robotic systems, touch screen devices, and rehabilitative technologies could benefit from this research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا