ﻻ يوجد ملخص باللغة العربية
We evidence magnetic field triggered polariton lasing in a microcavity containing semimagnetic quantum wells. This effect is associated with a decrease of the polariton lasing threshold power in magnetic field. The observed magnetic field dependence of the threshold power systematically exhibits a minimum which only weakly depends on the zero-field photon-exciton detuning. These results are interpreted as a consequence of the polariton giant Zeeman splitting which in magnetic field: leads to a decrease of the number of accessible states in the lowest polariton branch by a factor of two, and substantially changes the photon-exciton detuning.
Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relativ
Polariton condensates are investigated in periodical potentials created by surface acoustic waves using both resonant and non-resonant optical excitation. Under resonant pumping condensates are formed due to polariton parametric scattering from the p
We report on the effect of noise on the characteristics of the bistable polariton emission system. The present experiment provides a time resolved access to the polariton emission intensity. We evidence the noise-induced transitions between the two s
We present a time-resolved study of the logical operation of a polariton condensate transistor switch. Creating a polariton condensate (source) in a GaAs ridge-shaped microcavity with a non-resonant pulsed laser beam, the polariton propagation toward
Microcavity exciton polaritons are promising candidates to build a new generation of highly nonlinear and integrated optoelectronic devices. Such devices range from novel coherent light emitters to reconfigurable potential landscapes for electro-opti