ترغب بنشر مسار تعليمي؟ اضغط هنا

Prototype of a bistable polariton field-effect transistor switch

68   0   0.0 ( 0 )
 نشر من قبل Christian Schneider
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microcavity exciton polaritons are promising candidates to build a new generation of highly nonlinear and integrated optoelectronic devices. Such devices range from novel coherent light emitters to reconfigurable potential landscapes for electro-optical polariton-lattice based quantum simulators as well as building blocks of optical logic architectures. Especially for the latter, the strongly interacting nature of the light-matter hybrid particles has been used to facilitate fast and efficient switching of light by light, something which is very hard to achieve with weakly interacting photons. We demonstrate here that polariton transistor switches can be fully integrated in electro-optical schemes by implementing a one-dimensional polariton channel which is operated by an electrical gate rather than by a control laser beam. The operation of the device, which is the polariton equivalent to a field-effect transistor, relies on combining electro-optical potential landscape engineering with local exciton ionization to control the scattering dynamics underneath the gate. We furthermore demonstrate that our device has a region of negative differential resistance and features a completely new way to create bistable behavior.



قيم البحث

اقرأ أيضاً

133 - C. Anton , T.C.H. Liew , G. Tosi 2012
We present a time-resolved study of the logical operation of a polariton condensate transistor switch. Creating a polariton condensate (source) in a GaAs ridge-shaped microcavity with a non-resonant pulsed laser beam, the polariton propagation toward s a collector, at the ridge edge, is controlled by a second weak pulse (gate), located between the source and the collector. The experimental results are interpreted in the light of simulations based on the generalized Gross-Pitaevskii equation, including incoherent pumping, decay and energy relaxation within the condensate.
We report on the effect of noise on the characteristics of the bistable polariton emission system. The present experiment provides a time resolved access to the polariton emission intensity. We evidence the noise-induced transitions between the two s table states of the bistable polaritons. It is shown that the external noise specifications, intensity and correlation time, can efficiently modify the polariton Kramers time and residence time. We find that there is a threshold noise strength that provokes the collapse of the hysteresis loop. The experimental results are reproduced by numerical simulations using Gross-Pitaeviskii equation driven by a stochastic excitation.
We show that a Spin Field Effect Transistor, realized with a semiconductor quantum wire channel sandwiched between half-metallic ferromagnetic contacts, can have Fano resonances in the transmission spectrum. These resonances appear because the ferrom agnets are half-metallic, so that the Fermi level can be placed above the majority but below the minority spin band. In that case, the majority spins will be propagating, but the minority spins will be evanescent. At low temperatures, the Fano resonances can be exploited to implement a digital binary switch that can be turned on or off with a very small gate voltage swing of few tens of microvolts, leading to extremely small dynamic power dissipation during switching. An array of 500,000 x 500,000 such transistors can detect ultrasmall changes in a magnetic field with a sensitivity of 1 femto-Tesla/sqrt{Hz}, if each transistor is biased near a Fano resonance.
In this report we demonstrate a novel concept for a planar cavity polariton beam amplifier using non-resonant excitation. In contrast to resonant excitation schemes, background carriers are injected which form excitons, providing both gain and a repu lsive potential for a polariton condensate. Using an attractive potential environment induced by a locally elongated cavity layer, the repulsive potential of the injected background carriers is compensated and a significant amplification of polariton beams is achieved without beam distortion.
Fundamental physical properties limiting the performance of spin field effect transistors are compared to those of ordinary (charge-based) field effect transistors. Instead of raising and lowering a barrier to current flow these spin transistors use static spin-selective barriers and gate control of spin relaxation. The different origins of transistor action lead to distinct size dependences of the power dissipation in these transistors and permit sufficiently small spin-based transistors to surpass the performance of charge-based transistors at room temperature or above. This includes lower threshold voltages, smaller gate capacitances, reduced gate switching energies and smaller source-drain leakage currents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا