ﻻ يوجد ملخص باللغة العربية
Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relatively small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.
We evidence magnetic field triggered polariton lasing in a microcavity containing semimagnetic quantum wells. This effect is associated with a decrease of the polariton lasing threshold power in magnetic field. The observed magnetic field dependence
We observe a spontaneous parity breaking bifurcation to a ferromagnetic state in a spatially trapped exciton-polariton condensate. At a critical bifurcation density under nonresonant excitation, the whole condensate spontaneously magnetizes and rando
Interacting Bosons, loaded in artificial lattices, have emerged as a modern platform to explore collective manybody phenomena, quantum phase transitions and exotic phases of matter as well as to enable advanced on chip simulators. Such experiments st
We measure the full photon-number distribution emitted from a Bose condensate of microcavity exciton-polaritons confined in a micropillar cavity. The statistics are acquired by means of a photonnumber resolving transition edge sensor. We directly obs
We generalize the spin Meissner effect for exciton-polariton condensate confined in annular geometries to the case of non-trivial topology of the condensate wavefunction. In contrast to the conventional spin Meissner state, topological spin Meissner