ﻻ يوجد ملخص باللغة العربية
Machine learning algorithms have recently emerged as a tool to generate force fields which display accuracies approaching the ones of the ab-initio calculations they are trained on, but are much faster to compute. The enhanced computational speed of machine learning force fields results key for modelling metallic nanoparticles, as their fluxionality and multi-funneled energy landscape needs to be sampled over long time scales. In this review, we first formally introduce the most commonly used machine learning algorithms for force field generation, briefly outlining their structure and properties. We then address the core issue of training database selection, reporting methodologies both already used and yet unused in literature. We finally report and discuss the recent literature regarding machine learning force fields to sample the energy landscape and study the catalytic activity of metallic nanoparticles.
We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analysing the performance of 2-body, 3-body and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body G
Atomistic or ab-initio molecular dynamics simulations are widely used to predict thermodynamics and kinetics and relate them to molecular structure. A common approach to go beyond the time- and length-scales accessible with such computationally expen
We show how standard Metadynamics coupled with classical Molecular Dynamics can be successfully ap- plied to sample the configurational and free energy space of metallic and bimetallic nanopclusters via the implementation of collective variables rela
The MolMod database is presented, which is openly accessible at http://molmod.boltzmann-zuse.de/ and contains presently intermolecular force fields for over 150 pure fluids. It was developed and is maintained by the Boltzmann-Zuse Society for Computa
In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mos importance as a struc