ﻻ يوجد ملخص باللغة العربية
Obtaining superlinear lower bounds on tensor rank is a major open problem in complexity theory. In this paper we propose a generalization of the approach used by Strassen in the proof of his 3n/2 border rank lower bound. Our approach revolves around a problem on commuting matrices: Given matrices Z_1,...,Z_p of size n and an integer r>n, are there commuting matrices Z_1,...,Z_p of size r such that every Z_k is embedded as a submatrix in the top-left corner of Z_k? As one of our main results, we show that this question always has a positive answer for r larger than rank(T)+n, where T denotes the tensor with slices Z_1,..,Z_p. Taking the contrapositive, if one can show for some specific matrices Z_1,...,Z_p and a specific integer r that this question has a negative answer, this yields the lower bound rank(T) > r-n. There is a little bit of slack in the above rank(T)+n bound, but we also provide a number of exact characterizations of tensor rank and symmetric rank, for ordinary and symmetric tensors, over the fields of real and complex numbers. Each of these characterizations points to a corresponding variation on the above approach. In order to explain how Strassens theorem fits within this framework we also provide a self-contained proof of his lower bound.
Given three nonnegative integers $p,q,r$ and a finite field $F$, how many Hankel matrices $left( x_{i+j}right) _{0leq ileq p, 0leq jleq q}$ over $F$ have rank $leq r$ ? This question is classical, and the answer ($q^{2r}$ when $rleqminleft{ p,qright}
We define the Augmentation property for binary matrices with respect to different rank functions. A matrix $A$ has the Augmentation property for a given rank function, if for any subset of column vectors $x_1,...,x_t$ for for which the rank of $A$ do
Let $G$ be a connected reductive algebraic group over an algebraically closed field $k$, and assume that the characteristic of $k$ is zero or a pretty good prime for $G$. Let $P$ be a parabolic subgroup of $G$ and let $mathfrak p$ be the Lie algebra
Positive semidefinite rank (PSD-rank) is a relatively new quantity with applications to combinatorial optimization and communication complexity. We first study several basic properties of PSD-rank, and then develop new techniques for showing lower bo
This paper studies commuting matrices in max algebra and nonnegative linear algebra. Our starting point is the existence of a common eigenvector, which directly leads to max analogues of some classical results for complex matrices. We also investigat