ﻻ يوجد ملخص باللغة العربية
Integral operators of Abel type of order a > 0 arise naturally in a large spectrum of physical processes. Their inversion requires care since the resulting inverse problem is ill-posed. The purpose of this work is to devise and analyse a family of appropriate Hilbert scales so that the operator is ill-posed of order a in the scale. We provide weak regularity assumptions on the kernel underlying the operator for the above to hold true. Our construction leads to a well-defined regularisation strategy by Tikhonov regularisation in Hilbert scales. We thereby generalise the results of Gorenflo and Yamamoto for a < 1 to arbitrary a > 0 and more general kernels. Thanks to tools from interpolation theory, we also show that the a priori associated to the Hilbert scale formulates in terms of smoothness in usual Sobolev spaces up to boundary conditions, and that the regularisation term actually amounts to penalising derivatives. Finally, following the theoretical construction, we develop a comprehensive numerical approach, where the a priori is encoded in a single parameter rather than in a full operator. Several numerical examples are shown, both confirming the theoretical convergence rates and showing the general applicability of the method.
A dispersive analysis of $etato 3pi$ decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: i) The angular averages of the amplitudes need to be per
We study fractional differential equations of Riemann-Liouville and Caputo type in Hilbert spaces. Using exponentially weighted spaces of functions defined on $mathbb{R}$, we define fractional operators by means of a functional calculus using the Fou
Necessary and sufficient conditions are presented for the Abel averages of discrete and strongly continuous semigroups, $T^k$ and $T_t$, to be power convergent in the operator norm in a complex Banach space. These results cover also the case where $T
The main objective for this research was the analytical exploration of the dynamics of planar satellite rotation during the motion of an elliptical orbit around a planet. First, we revisit the results of J. Wisdom et al. (1984), in which, by the eleg
We present numerical methods based on the fast Fourier transform (FFT) to solve convolution integral equations on a semi-infinite interval (Wiener-Hopf equation) or on a finite interval (Fredholm equation). We extend and improve a FFT-based method fo