We introduce a network growth model in which the preferential attachment probability includes the fitness vertex and the Euclidean distance between nodes. We grow a planar network around its barycenter. Each new site is fixed in space by obeying a power law distribution.
We introduce a two-dimensional growth model where every new site is located, at a distance $r$ from the barycenter of the pre-existing graph, according to the probability law $1/r^{2+alpha_G} (alpha_G ge 0)$, and is attached to (only) one pre-existin
g site with a probability $propto k_i/r^{alpha_A}_i (alpha_A ge 0$; $k_i$ is the number of links of the $i^{th}$ site of the pre-existing graph, and $r_i$ its distance to the new site). Then we numerically determine that the probability distribution for a site to have $k$ links is asymptotically given, for all values of $alpha_G$, by $P(k) propto e_q^{-k/kappa}$, where $e_q^x equiv [1+(1-q)x]^{1/(1-q)}$ is the function naturally emerging within nonextensive statistical mechanics. The entropic index is numerically given (at least for $alpha_A$ not too large) by $q = 1+(1/3) e^{-0.526 alpha_A}$, and the characteristic number of links by $kappa simeq 0.1+0.08 alpha_A$. The $alpha_A=0$ particular case belongs to the same universality class to which the Barabasi-Albert model belongs. In addition to this, we have numerically studied the rate at which the average number of links $<k_i>$ increases with the scaled time $t/i$; asymptotically, $<k_i > propto (t/i)^beta$, the exponent being close to $beta={1/2}(1-alpha_A)$ for $0 le alpha_A le 1$, and zero otherwise. The present results reinforce the conjecture that the microscopic dynamics of nonextensive systems typically build (for instance, in Gibbs $Gamma$-space for Hamiltonian systems) a scale-free network.
In the Yule-Simon process, selection of words follows the preferential attachment mechanism, resulting in the power-law growth in the cumulative number of individual word occurrences. This is derived using mean-field approximation, assuming a continu
um limit of both the time and number of word occurrences. However, time and word occurrences are inherently discrete in the process, and it is natural to assume that the cumulative number of word occurrences has a certain fluctuation around the average behavior predicted by the mean-field approximation. We derive the exact and approximate forms of the probability distribution of such fluctuation analytically and confirm that those probability distributions are well supported by the numerical experiments.
We present a simple model of network growth and solve it by writing down the dynamic equations for its macroscopic characteristics like the degree distribution and degree correlations. This allows us to study carefully the percolation transition usin
g a generating functions theory. The model considers a network with a fixed number of nodes wherein links are introduced using degree-dependent linking probabilities $p_k$. To illustrate the techniques and support our findings using Monte-Carlo simulations, we introduce the exemplary linking rule $p_k$ proportional to $k^{-alpha}$, with $alpha$ between -1 and plus infinity. This parameter may be used to interpolate between different regimes. For negative $alpha$, links are most likely attached to high-degree nodes. On the other hand, in case $alpha>0$, nodes with low degrees are connected and the model asymptotically approaches a process undergoing explosive percolation.
In this paper, a random graph process ${G(t)}_{tgeq 1}$ is studied and its degree sequence is analyzed. Let $(W_t)_{tgeq 1}$ be an i.i.d. sequence. The graph process is defined so that, at each integer time $t$, a new vertex, with $W_t$ edges attache
d to it, is added to the graph. The new edges added at time t are then preferentially connected to older vertices, i.e., conditionally on $G(t-1)$, the probability that a given edge is connected to vertex i is proportional to $d_i(t-1)+delta$, where $d_i(t-1)$ is the degree of vertex $i$ at time $t-1$, independently of the other edges. The main result is that the asymptotical degree sequence for this process is a power law with exponent $tau=min{tau_{W}, tau_{P}}$, where $tau_{W}$ is the power-law exponent of the initial degrees $(W_t)_{tgeq 1}$ and $tau_{P}$ the exponent predicted by pure preferential attachment. This result extends previous work by Cooper and Frieze, which is surveyed.
Preferential attachment models form a popular class of growing networks, where incoming vertices are preferably connected to vertices with high degree. We consider a variant of this process, where vertices are equipped with a random initial fitness r
epresenting initial inhomogeneities among vertices and the fitness influences the attractiveness of a vertex in an additive way. We consider a heavy-tailed fitness distribution and show that the model exhibits a phase transition depending on the tail exponent of the fitness distribution. In the weak disorder regime, one of the old vertices has maximal degree irrespective of fitness, while for strong disorder the vertex with maximal degree has to satisfy the right balance between fitness and age. Our methods use martingale methods to show concentration of degree evolutions as well as extreme value theory to control the fitness landscape.
Marcelo D. S. de Meneses
,Sharon D. da Cunha
,D. J. B. Soares
.
(2006)
.
"Preferential attachment scale-free growth model with random fitness"
.
Marcelo Durval Meneses S.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا