ﻻ يوجد ملخص باللغة العربية
Using the second moment of the pion distribution amplitude as an example, we investigate whether lattice calculations of matrix elements of local operators involving covariant derivatives may benefit from the recently proposed momentum smearing technique for hadronic interpolators. Comparing the momentum smearing technique to the traditional Wuppertal smearing we find - at equal computational cost - a considerable reduction of the statistical errors. The present investigation was carried out using $N_f=2+1$ dynamical non-perturbatively order $a$ improved Wilson fermions on lattices of different volumes and pion masses down to 220 MeV.
We present the results of a lattice study of the second moment of the light-cone pion distribution amplitude using two flavors of dynamical (clover) fermions on lattices of different volumes and pion masses down to $m_pisim 150 , mathrm {MeV}$. At la
We present preliminary results for the second moment of the pions distribution amplitude. The lattice formulation and the phenomenological implications are briefly reviewed, with special emphasis on some subtleties that arise when the Lorentz group i
We explore the feasibility of determining Mellin moments of the pions light cone distribution amplitude using the heavy quark operator product expansion (HOPE) method. As the first step of a proof of principle study we pursue a determination of the s
Using the soft pion theorem, crossing, and the dispersion relations for the two pion distribution amplitude ($2pi$DA) we argue that the second Gegenbauer moment the $rho$-meson DA ($a_2^{(rho)}$) most probably is negative. This result is at variance
The Boer-Mulders transverse momentum-dependent parton distribution (TMD) characterizes polarized quark transverse momentum in an unpolarized hadron. Techniques previously developed for lattice calculations of nucleon TMDs are applied to the pion. The