ﻻ يوجد ملخص باللغة العربية
We explore the feasibility of determining Mellin moments of the pions light cone distribution amplitude using the heavy quark operator product expansion (HOPE) method. As the first step of a proof of principle study we pursue a determination of the second Mellin moment. We discuss our choice of kinematics which allows us to successfully extract the moment at low pion momentum. We describe the numerical simulation, and describe the data analysis, which leads us to a preliminary determination of the second Mellin moment in the continuum limit in the quenched approximation as $langlexi^2rangle=0.19(7)$ in the $bar{text{MS}}$ scheme at 2 GeV.
We present preliminary results for the second moment of the pions distribution amplitude. The lattice formulation and the phenomenological implications are briefly reviewed, with special emphasis on some subtleties that arise when the Lorentz group i
Using the second moment of the pion distribution amplitude as an example, we investigate whether lattice calculations of matrix elements of local operators involving covariant derivatives may benefit from the recently proposed momentum smearing techn
We present the results of a lattice study of the second moment of the light-cone pion distribution amplitude using two flavors of dynamical (clover) fermions on lattices of different volumes and pion masses down to $m_pisim 150 , mathrm {MeV}$. At la
We have reported elsewhere in this conference on our continuing project to determine non-perturbative Wilson coefficients on the lattice, as a step towards a completely non-perturbative determination of the nucleon structure. In this talk we discuss
Nucleon structure functions can be observed in Deep Inelastic Scattering experiments, but it is an outstanding challenge to confront them with fully non-perturbative QCD results. For this purpose we investigate the product of electromagnetic currents