ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin structure of K valleys in single-layer WS$_2$ on Au(111)

83   0   0.0 ( 0 )
 نشر من قبل Philipp Eickholt
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Philipp Eickholt




اسأل ChatGPT حول البحث

The spin structure of the valence and conduction bands at the $overline{text{K}}$ and $overline{text{K}}$ valleys of single-layer WS$_2$ on Au(111) is determined by spin- and angle-resolved photoemission and inverse photoemission. The bands confining the direct band gap of 1.98 eV are out-of-plane spin polarized with spin-dependent energy splittings of 417 meV in the valence band and 16 meV in the conduction band. The sequence of the spin-split bands is the same in the valence and in the conduction bands and opposite at the $overline{text{K}}$ and the $overline{text{K}}$ high-symmetry points. The first observation explains dark excitons discussed in optical experiments, the latter points to coupled spin and valley physics in electron transport. The experimentally observed band dispersions are discussed along with band structure calculations for a freestanding single layer and for a single layer on Au(111).



قيم البحث

اقرأ أيضاً

We present a complete characterisation at the nanoscale of the growth and structure of single-layer tungsten disulfide (WS$_2$) epitaxially grown on Au(111). Following the growth process in real time with fast x-ray photoelectron spectroscopy, we obt ain a singly-oriented layer by choosing the proper W evaporation rate and substrate temperature during the growth. Information about the morphology, size and layer stacking of the WS$_2$ layer were achieved by employing x-ray photoelectron diffraction and low-energy electron microscopy. The strong spin splitting in the valence band of WS$_2$ coupled with the single-orientation character of the layer make this material the ideal candidate for the exploitation of the spin and valley degrees of freedom.
We employ time- and angle-resolved photoemission spectroscopy to study the spin- and valley-selective photoexcitation and dynamics of free carriers at the K and K points in singly-oriented single layer WS$_2$/Au(111). Our results reveal that in the v alence band maximum an ultimate valley polarization of free holes of 84$,$% can be achieved upon excitation with circularly polarized light at room temperature. Notably, we observe a significantly smaller valley polarization for the photoexcited free electrons in the conduction band minimum. Clear differences in the carrier dynamics between electrons and holes imply intervalley scattering processes into dark states being responsible for the efficient depolarization of the excited electron population.
We report direct measurements via angle-resolved photoemission spectroscopy (ARPES) of the electronic dispersion of single-layer CoO$_2$. The Fermi contour consists of a large hole pocket centered at the $overline{Gamma}$ point. To interpret the ARPE S results, we use density functional theory (DFT) in combination with the multi-orbital Gutzwiller Approximation (DFT+GA), basing our calculations on crystalline structure parameters derived from x-ray photoelectron diffraction and low-energy electron diffraction. Our calculations are in good agreement with the measured dispersion. We conclude that the material is a moderately correlated metal. We also discuss substrate effects, and the influence of hydroxylation on the CoO$_2$ single-layer electronic structure.
The electronic structure of epitaxial single-layer MoS$_2$ on Au(111) is investigated by angle-resolved photoemission spectroscopy, scanning tunnelling spectroscopy, and first principles calculations. While the band dispersion of the supported single -layer is close to a free-standing layer in the vicinity of the valence band maximum at $bar{K}$ and the calculated electronic band gap on Au(111) is similar to that calculated for the free-standing layer, significant modifications to the band structure are observed at other points of the two-dimensional Brillouin zone: At $bar{Gamma}$, the valence band maximum has a significantly higher binding energy than in the free MoS$_2$ layer and the expected spin-degeneracy of the uppermost valence band at the $bar{M}$ point cannot be observed. These band structure changes are reproduced by the calculations and can be explained by the detailed interaction of the out-of-plane MoS$_2$ orbitals with the substrate.
In monolayer Transition Metal Dichalcogenides (TMDs) the valence and conduction bands are spin split because of the strong spin-orbit interaction. In tungsten-based TMDs the spin-ordering of the conduction band is such that the so-called dark exciton , consisting of an electron and a hole with opposite spin orientation, has lower energy than the A exciton. A possible mechanism leading to the transition from bright to dark excitons involves the scattering of the electrons from the upper to the lower conduction band state in K. Here we exploit the valley selective optical selection rules and use two-color helicity-resolved pump-probe spectroscopy to directly measure the intravalley spin-flip relaxation dynamics of electrons in the conduction band of single-layer WS$_2$. This process occurs on a sub-ps time scale and it is significantly dependent on the temperature, indicative of a phonon-assisted relaxation. These experimental results are supported by time-dependent ab-initio calculations which show that the intra-valley spin-flip scattering occurs on significantly longer time scales only exactly at the K point. In a realistic situation the occupation of states away from the minimum of the conduction band leads to a dramatic reduction of the scattering time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا