ﻻ يوجد ملخص باللغة العربية
We relate the large time asymptotics of the energy statistics in open harmonic networks to the variance-gamma distribution and prove a full Large Deviation Principle. We consider both Hamiltonian and stochastic dynamics, the later case including electronic RC networks. We compare our theoretical predictions with the experimental data obtained by Ciliberto et al. [Phys. Rev. Lett. 110, 180601 (2013)].
We continue the investigation, started in [J. Stat. Phys. 166, 926-1015 (2017)], of a network of harmonic oscillators driven out of thermal equilibrium by heat reservoirs. We study the statistics of the fluctuations of the heat fluxes flowing between
We study in detail relevant spectral properties of the adjacency matrix of inhomogeneous amenable networks, and in particular those arising by negligible additive perturbations of periodic lattices. The obtained results are deeply connected to the sy
The measurement of a quantum system becomes itself a quantum-mechanical process once the apparatus is internalized. That shift of perspective may result in different physical predictions for a variety of reasons. We present a model describing both sy
The isotropic harmonic oscillator in dimension 3 separates in several different coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators, one of which is the Hamiltonian. We show that the joint sp
It has been suggested that the distribution of the suitably normalized number of zeros of Laplacian eigenfunctions contains information about the geometry of the underlying domain. We study this distribution (more precisely, the distribution of the n