ﻻ يوجد ملخص باللغة العربية
We continue the investigation, started in [J. Stat. Phys. 166, 926-1015 (2017)], of a network of harmonic oscillators driven out of thermal equilibrium by heat reservoirs. We study the statistics of the fluctuations of the heat fluxes flowing between the network and the reservoirs in the nonequilibrium steady state and in the large time limit. We prove a large deviation principle for these fluctuations and derive the fluctuation relation satisfied by the associated rate function.
We address the problem of heat transport in a chain of coupled quantum harmonic oscillators, exposed to the influences of local environments of various nature, stressing the effects that the specific nature of the environment has on the phenomenology
We consider the chemical reaction networks and study currents in these systems. Reviewing recent decomposition of rate functionals from large deviation theory for Markov processes, we adapt these results for reaction networks. In particular, we state
We relate the large time asymptotics of the energy statistics in open harmonic networks to the variance-gamma distribution and prove a full Large Deviation Principle. We consider both Hamiltonian and stochastic dynamics, the later case including elec
Topological insulators with the time reversal symmetry broken exhibit strong magnetoelectric and magneto-optic effects. While these effects are well-understood in or near equilibrium, nonequilibrium physics is richer yet less explored. We consider a
The thermal equilibrium distribution over quantum-mechanical wave functions is a so-called Gaussian adjusted projected (GAP) measure, $GAP(rho_beta)$, for a thermal density operator $rho_beta$ at inverse temperature $beta$. More generally, $GAP(rho)$