ﻻ يوجد ملخص باللغة العربية
The measurement of a quantum system becomes itself a quantum-mechanical process once the apparatus is internalized. That shift of perspective may result in different physical predictions for a variety of reasons. We present a model describing both system and apparatus and consisting of a harmonic oscillator coupled to a field. The equation of motion is a quantum stochastic differential equation. By solving it we establish the conditions ensuring that the two perspectives are compatible, in that the apparatus indeed measures the observable it is ideally supposed to.
We apply the Born-Jordan and Weyl quantization formulas for polynomials in canonical coordinates to the constants of motion of some examples of the superintegrable 2D anisotropic harmonic oscillator. Our aim is to study the behaviour of the algebra o
We consider the model of a quantum harmonic oscillator governed by a Lindblad master equation where the typical drive and loss channels are multi-photon processes instead of single-photon ones; this implies a dissipation operator of order 2k with int
We prove a new lower bound on the indirect Coulomb energy in quantum mechanics in terms of the single particle density of the system. The new universal lower bound is an alternative to the classical Lieb--Oxford bound (with a smaller constant, 1.45 <
We show the existence of Lorentz invariant Berry phases generated, in the Stueckleberg-Horwitz-Piron manifestly covariant quantum theory (SHP), by a perturbed four dimensional harmonic oscillator. These phases are associated with a fractional perturb
The isotropic harmonic oscillator in dimension 3 separates in several different coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators, one of which is the Hamiltonian. We show that the joint sp