ترغب بنشر مسار تعليمي؟ اضغط هنا

Helimagnon resonances in an intrinsic chiral magnonic crystal

65   0   0.0 ( 0 )
 نشر من قبل Mathias Weiler
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally study magnetic resonances in the helical and conical magnetic phases of the chiral magnetic insulator Cu$_2$OSeO$_3$ at the temperature $T$=5 K. Using a broadband microwave spectroscopy technique based on vector network analysis, we identify three distinct sets of helimagnon resonances in the frequency range 2 GHz $leq f leq$ 20 GHz. The extracted resonance frequencies are in accordance with calculations of the helimagnon bandstructure found in an intrinsic chiral magnonic crystal. The periodic modulation of the equilibrium spin direction that leads to the formation of the magnonic crystal is a direct consequence of the chiral magnetic ordering caused by the Dzyaloshinskii-Moriya interaction. The opening of magnon band-gaps allows for excitation of helimagnons with wave vectors that are multiples of the spiral wave vector.



قيم البحث

اقرأ أيضاً

MnSi is a cubic compound with small magnetic anisotropy, which stabilizes a helimagnetic spin spiral that reduces to a ferromagnetic and antiferromagnetic state in the long- and short-wavelength limit, respectively. We report a comprehensive inelasti c neutron scattering study of the collective magnetic excitations in the helimagnetic state of MnSi. In our study we observe a rich variety of seemingly anomalous excitation spectra, as measured in well over twenty different locations in reciprocal space. Using a model based on only three parameters, namely the measured pitch of the helix, the measured ferromagnetic spin wave stiffness and the amplitude of the signal, as the only free variable, we can simultaneously account for textit{all} of the measured spectra in excellent quantitative agreement with experiment. Our study identifies the formation of intense, strongly coupled bands of helimagnons as a universal characteristic of systems with weak chiral interactions.
Achieving control over magnon spin currents in insulating magnets - where dissipation due to Joule heating is highly suppressed - is an active area of research that could lead to energy-efficient spintronics applications. However, magnon spin current s supported by conventional systems with uniform magnetic order have proven hard to control. An alternative approach that relies on topologically protected magnonic edge states of spatially periodic magnetic textures has recently emerged. A prime example of such textures is the ferromagnetic skyrmion crystal which hosts chiral edge states providing a platform for magnon spin currents. Here, we show, for the first time, an external magnetic field can drive a topological phase transition in the spin wave spectrum of a ferromagnetic skyrmion crystal. The topological phase transition is signaled by the closing of a low-energy bulk magnon gap at a critical field. In the topological phase, below the critical field, two topologically protected chiral magnonic edge states lie within this gap, but they unravel in the trivial phase, above the critical field. Remarkably, the topological phase transition involves an inversion of two magnon bands that at the $Gamma$ point correspond to the breathing and anticlockwise modes of the skyrmions in the crystal. Our findings suggest that an external magnetic field could be used as a knob to switch on and off magnon spin currents carried by topologically protected chiral magnonic edge states.
109 - Yan He , P. A. Lee , C. M. Varma 2013
We show that a finite Hall effect in zero applied magnetic field occurs for partially filled bands in certain time-reversal violating states with zero net flux per unit-cell. These states are the Magneto-chiral states with parameters in the effective one-particle Hamiltonian such that they do not satisfy the Haldane-type constraints for topological electronic states. The results extend an earlier discussion of the Kerr effect observed in the cuprates but may be applicable to other experimental situations.
Superconductors with kagome lattices have been identified for over 40 years, with a superconducting transition temperature TC up to 7K. Recently, certain kagome superconductors have been found to exhibit an exotic charge order, which intertwines with superconductivity and persists to a temperature being one order of magnitude higher than TC. In this work, we use scanning tunneling microscopy (STM) to study the charge order in kagome superconductor RbV3Sb5. We observe both a 2x2 chiral charge order and nematic surface superlattices (predominantly 1x4). We find that the 2x2 charge order exhibits intrinsic chirality with magnetic field tunability. Defects can scatter electrons to introduce standing waves, which couple with the charge order to cause extrinsic effects. While the chiral charge order resembles that discovered in KV3Sb5, it further interacts with the nematic surface superlattices that are absent in KV3Sb5 but exist in CsV3Sb5.
The multiferroic ferrimagnet Cu$_2$OSeO$_3$ with a chiral crystal structure attracted a lot of recent attention due to the emergence of magnetic skyrmion order in this material. Here, the topological properties of its magnon excitations are systemati cally investigated by linear spin-wave theory and inelastic neutron scattering. When considering Heisenberg exchange interactions only, two degenerate Weyl magnon nodes with topological charges $pm$2 are observed at high-symmetry points. Each Weyl point splits into two as the symmetry of the system is further reduced by including into consideration the nearest-neighbor Dzyaloshinsky-Moriya interaction, crucial for obtaining an accurate fit to the experimental spin-wave spectrum. The predicted topological properties are verified by surface state and Chern number analysis. Additionally, we predict that a measurable thermal Hall conductivity can be associated with the emergence of the Weyl points, the position of which can be tuned by changing the crystal symmetry of the material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا