ﻻ يوجد ملخص باللغة العربية
The multiferroic ferrimagnet Cu$_2$OSeO$_3$ with a chiral crystal structure attracted a lot of recent attention due to the emergence of magnetic skyrmion order in this material. Here, the topological properties of its magnon excitations are systematically investigated by linear spin-wave theory and inelastic neutron scattering. When considering Heisenberg exchange interactions only, two degenerate Weyl magnon nodes with topological charges $pm$2 are observed at high-symmetry points. Each Weyl point splits into two as the symmetry of the system is further reduced by including into consideration the nearest-neighbor Dzyaloshinsky-Moriya interaction, crucial for obtaining an accurate fit to the experimental spin-wave spectrum. The predicted topological properties are verified by surface state and Chern number analysis. Additionally, we predict that a measurable thermal Hall conductivity can be associated with the emergence of the Weyl points, the position of which can be tuned by changing the crystal symmetry of the material.
We present magnetodielectric measurements in single crystals of the cubic spin-1/2 compound Cu$_2$OSeO$_3$. A magnetic field-induced electric polarization ($vec{P}$) and a finite magnetocapacitance (MC) is observed at the onset of the magnetically or
We report the observation of the skyrmion lattice in the chiral multiferroic insulator Cu2OSeO3 using Cu L3-edge resonant soft x-ray diffraction. We observe the unexpected existence of two distinct skyrmion sublattices that arise from inequivalent Cu
Achieving control over magnon spin currents in insulating magnets - where dissipation due to Joule heating is highly suppressed - is an active area of research that could lead to energy-efficient spintronics applications. However, magnon spin current
We report the discovery of topological magnetism in the candidate magnetic Weyl semimetal CeAlGe. Using neutron scattering we find this system to host several incommensurate, square-coordinated multi-$vec{k}$ magnetic phases below $T_{rm{N}}$. The to
Constrained by the Nielsen-Ninomiya no-go theorem, in all so-far experimentally determined Weyl semimetals (WSMs) the Weyl points (WPs) always appear in pairs in the momentum space with no exception. As a consequence, Fermi arcs occur on surfaces whi