ترغب بنشر مسار تعليمي؟ اضغط هنا

Chiral Magnonic Edge States in Ferromagnetic Skyrmion Crystals Controlled by Magnetic Fields

143   0   0.0 ( 0 )
 نشر من قبل Sebastian Diaz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Achieving control over magnon spin currents in insulating magnets - where dissipation due to Joule heating is highly suppressed - is an active area of research that could lead to energy-efficient spintronics applications. However, magnon spin currents supported by conventional systems with uniform magnetic order have proven hard to control. An alternative approach that relies on topologically protected magnonic edge states of spatially periodic magnetic textures has recently emerged. A prime example of such textures is the ferromagnetic skyrmion crystal which hosts chiral edge states providing a platform for magnon spin currents. Here, we show, for the first time, an external magnetic field can drive a topological phase transition in the spin wave spectrum of a ferromagnetic skyrmion crystal. The topological phase transition is signaled by the closing of a low-energy bulk magnon gap at a critical field. In the topological phase, below the critical field, two topologically protected chiral magnonic edge states lie within this gap, but they unravel in the trivial phase, above the critical field. Remarkably, the topological phase transition involves an inversion of two magnon bands that at the $Gamma$ point correspond to the breathing and anticlockwise modes of the skyrmions in the crystal. Our findings suggest that an external magnetic field could be used as a knob to switch on and off magnon spin currents carried by topologically protected chiral magnonic edge states.



قيم البحث

اقرأ أيضاً

When the crystalline symmetries that protect a higher-order topological phase are not preserved at the boundaries of the sample, gapless hinge modes or in-gap corner states cannot be stabilized. Therefore, careful engineering of the sample terminatio n is required. Similarly, magnetic textures, whose quantum fluctuations determine the supported magnonic excitations, tend to relax to new configurations that may also break crystalline symmetries when boundaries are introduced. Here we uncover that antiskyrmion crystals provide an experimentally accessible platform to realize a magnonic topological quadrupole insulator, whose hallmark signature are robust magnonic corner states. Furthermore, we show that tuning an applied magnetic field can trigger the self-assembly of antiskyrmions carrying a fractional topological charge along the sample edges. Crucially, these fractional antiskyrmions restore the symmetries needed to enforce the emergence of the magnonic corner states. Using the machinery of nested Wilson loops, adapted to magnonic systems supported by noncollinear magnetic textures, we demonstrate the quantization of the bulk quadrupole moment, edge dipole moments, and corner charges.
Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, in the chiral it inerant-electron magnet MnSi. The skyrmion lattice stabilizes at the border between paramagnetism and long-range helimagnetic order perpendicular to a small applied magnetic field regardless of the direction of the magnetic field relative to the atomic lattice. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states.
We demonstrate a fast numerical method of theoretical studies of skyrmion lattice or spiral order in magnetic materials with Dzyaloshinsky-Moriya interaction. The method is based on the Fourier expansion of the magnetization combined with a minimizat ion of the free energy functional of the magnetic material in Fourier space, yielding the optimal configuration of the system for any given set of parameters. We employ a Lagrange multiplier technique in order to satisfy micromagnetic constraints. We apply this method to a system that exhibits, depending on the parameter choice, ferromagnetic, skyrmion lattice, or spiral (helical) order. Known critical fields corresponding to the helical-skyrmion as well as the skyrmion-ferromagnet phase transitions are reproduced with high precision. Using this numerical method we predict new types of excited (metastable) states of the skyrmion lattice, which may be stabilized by coupling the skyrmion lattice with a superconducting vortex lattice. The method can be readily adapted to other micromagnetic systems.
The pivotal role of magnetic anisotropy in stabilising two-dimensional (2D) magnetism has been widely accepted, however, direct correlation between magnetic anisotropy and long-range magnetic ordering in the 2D limit is yet to be explored. Here, usin g angle- and temperature-dependent tunnelling magnetoresistance, we report unprecedented metamagnetic phase transitions in atomically-thin CrOCl, triggered by magnetic easy-axis flipping instead of the conventional spin flop mechanism. Few-layer CrOCl tunnelling devices of various thicknesses consistently show an in-plane antiferromagnetic (AFM) ground state with the easy axis aligned along the Cr-O-Cr direction (b-axis). Strikingly, with the presence of a magnetic field perpendicular to the easy-axis (H||c), magnetization of CrOCl does not follow the prevalent spin rotation and saturation pattern, but rather exhibits an easy-axis flipping from the in-plane to out-of-plane directions. Such magnetic anisotropy controlled metamagnetic phase transitions are manifested by a drastic upturn in tun- nelling current, which shows anomalous shifts towards higher H when temperature increases. By 2D mapping of tunnelling currents as a function of both temperature and H, we determine a unique ferrimagnetic state with a superstructure periodicity of five unit cells after the field-induced metam- agnetic transitions. The feasibility to control 2D magnetism by manipulating magnetic anisotropy may open enormous opportunities in spin-based device applications.
94 - P. Zhang , A. Das , E. Barts 2020
Topological spin textures in an itinerant ferromagnet, SrRuO$_3$ is studied combining Hall transport measurements and numerical simulations. We observe characteristic signatures of the Topological Hall Effect associated with skyrmions. A relatively l arge thickness of our films and absence of heavy metal layers make the interfacial Dzyaloshinskii-Moriya interaction an unlikely source of these topological spin textures. Additionally, the transport anomalies exhibit an unprecedented robustness to magnetic field tilting and temperature. Our numerical simulations suggest that this unconventional behavior results from magnetic bubbles with skyrmion topology stabilized by magnetodipolar interactions in an unexpected region of parameter space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا