ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision cosmology with redshift-space bispectrum: a perturbation theory based model at one-loop order

53   0   0.0 ( 0 )
 نشر من قبل Ichihiko Hashimoto
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The large-scale matter distribution in the late-time Universe exhibits gravity-induced non-Gaussianity, and the bispectrum, three-point cumulant is expected to contain significant cosmological information. In particular, the measurement of the bispectrum helps to tighten the constraints on dark energy and modified gravity through the redshift-space distortions (RSD). In this paper, extending the work by Taruya, Nishimichi & Saito (2010, Phys.Rev.D 82, 063522), we present a perturbation theory (PT) based model of redshift-space matter bispectrum that can keep the non-perturbative damping effect under control. Characterizing this non-perturbative damping by a univariate function with single free parameter, the PT model of the redshift-space bispectrum is tested against a large set of cosmological $N$-body simulations, finding that the predicted monopole and quadrupole moments are in a good agreement with simulations at the scales of baryon acoustic oscillations (well beyond the range of agreement of standard PT). The validity of the univariate ansatz of the damping effect is also examined, and with the PT calculation at next-to-leading order, the fitted values of the free parameter is shown to consistently match those obtained from the PT model of power spectrum by Taruya, Nishimichi & Saito (2010).



قيم البحث

اقرأ أيضاً

The anisotrpy of the redshift space bispectrum $B^s(mathbf{k_1},mathbf{k_2},mathbf{k_3})$, which contains a wealth of cosmological information, is completely quantified using multipole moments $bar{B}^m_{ell}(k_1,mu,t)$ where $k_1$, the length of the largest side, and $(mu,t)$ respectively quantify the size and shape of the triangle $(mathbf{k_1},mathbf{k_2},mathbf{k_3})$. We present analytical expressions for all the multipoles which are predicted to be non-zero ($ell le 8, m le 6$ ) at second order perturbation theory. The multipoles also depend on $beta_1,b_1$ and $gamma_2$, which quantify the linear redshift distortion parameter, linear bias and quadratic bias respectively. Considering triangles of all possible shapes, we analyse the shape dependence of all of the multipoles holding $k_1=0.2 , {rm Mpc}^{-1}, beta_1=1, b_1=1$ and $gamma_2=0$ fixed. The monopole $bar{B}^0_0$, which is positive everywhere, is minimum for equilateral triangles. $bar{B}_0^0$ increases towards linear triangles, and is maximum for linear triangles close to the squeezed limit. Both $bar{B}^0_{2}$ and $bar{B}^0_4$ are similar to $bar{B}^0_0$, however the quadrupole $bar{B}^0_2$ exceeds $bar{B}^0_0$ over a significant range of shapes. The other multipoles, many of which become negative, have magnitudes smaller than $bar{B}^0_0$. In most cases the maxima or minima, or both, occur very close to the squeezed limit. $mid bar{B}^m_{ell} mid $ is found to decrease rapidly if $ell$ or $m$ are increased. The shape dependence shown here is characteristic of non-linear gravitational clustering. Non-linear bias, if present, will lead to a different shape dependence.
We present the one-loop 2-point function of biased tracers in redshift space computed with Lagrangian perturbation theory, including a full resummation of both long-wavelength (infrared) displacements and associated velocities. The resulting model ac curately predicts the power spectrum and correlation function of halos and mock galaxies from two different sets of N-body simulations at the percent level for quasi-linear scales, including the damping of the baryon acoustic oscillation signal due to the bulk motions of galaxies. We compare this full resummation with other, approximate, techniques including the moment expansion and Gaussian streaming model. We discuss infrared resummation in detail and compare our Lagrangian formulation with the Eulerian theory augmented by an infrared resummation based on splitting the input power spectrum into wiggle and no-wiggle components. We show that our model is able to recover unbiased cosmological parameters in mock data encompassing a volume much larger than what will be available to future galaxy surveys. We demonstrate how to efficiently compute the resulting expressions numerically, making available a fast Python code capable of rapidly computing these statistics in both configuration and Fourier space.
Perturbation theory (PT) has been used to interpret the observed nonlinear large-scale structure statistics at the quasi-linear regime. To facilitate the PT-based analysis, we have presented the GridSPT algorithm, a grid-based method to compute the n onlinear density and velocity fields in standard perturbation theory (SPT) from a given linear power spectrum. Here, we further put forward the approach by taking the redshift-space distortions into account. With the new implementation, we have, for the first time, generated the redshift-space density field to the fifth order and computed the next-to-next-to-leading order (2 loop) power spectrum and the next-to-leading order (1 loop) bispectrum of matter clustering in redshift space. By comparing the result with corresponding analytical SPT calculation and $N$-body simulations, we find that the SPT calculation (A) suffers much more from the UV sensitivity due to the higher-derivative operators and (B) deviates from the $N$-body results from the Fourier wavenumber smaller than real space $k_{rm max}$. Finally, we have shown that while Pade approximation removes spurious features in morphology, it does not improve the modeling of power spectrum and bispectrum.
An accurate theoretical template for the galaxy power spectrum is a key for the success of ongoing and future spectroscopic surveys. We examine to what extent the Effective Field Theory of Large Scale Structure is able to provide such a template and correctly estimate cosmological parameters. To that end, we initiate a blinded challenge to infer cosmological parameters from the redshift-space power spectrum of high-resolution mock catalogs mimicking the BOSS galaxy sample but covering a hundred times larger cumulative volume. This gigantic simulation volume allows us to separate systematic bias due to theoretical modeling from the statistical error due to sample variance. The challenge task was to measure three unknown input parameters used in the simulation: the Hubble constant, the matter density fraction, and the clustering amplitude. We present analyses done by two independent teams, who have fitted the mock simulation data generated by yet another independent group. This allows us to avoid any confirmation bias by analyzers and pin down possible tuning of the specific EFT implementations. Both independent teams have recovered the true values of the input parameters within sub-percent statistical errors corresponding to the total simulation volume.
The galaxy number density is a key quantity to compare theoretical predictions to the observational data from current and future Large Scale Structure surveys. The precision demanded by these Stage IV surveys requires the use of second order cosmolog ical perturbation theory. Based on the independent calculation published previously, we present the result of the comparison with the results of three other groups at leading order. Overall we find that the differences between the different approaches lie mostly on the definition of certain quantities, where the ambiguity of signs results in the addition of extra terms at second order in perturbation theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا