ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy number counts at second order in perturbation theory: a leading-order term comparison

75   0   0.0 ( 0 )
 نشر من قبل Jorge L. Fuentes
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The galaxy number density is a key quantity to compare theoretical predictions to the observational data from current and future Large Scale Structure surveys. The precision demanded by these Stage IV surveys requires the use of second order cosmological perturbation theory. Based on the independent calculation published previously, we present the result of the comparison with the results of three other groups at leading order. Overall we find that the differences between the different approaches lie mostly on the definition of certain quantities, where the ambiguity of signs results in the addition of extra terms at second order in perturbation theory.



قيم البحث

اقرأ أيضاً

Next generation surveys will be capable of determining cosmological parameters beyond percent level. To match this precision, theoretical descriptions should look beyond the linear perturbations to approximate the observables in large scale structure . A quantity of interest is the Number density of galaxies detected by our instruments. This has been focus of interest recently, and several efforts have been made to explain relativistic effects theoretically, thereby testing the full theory. However, the results at nonlinear level from previous works are in disagreement. We present a new and independent approach to computing the relativistic galaxy number counts to second order in cosmological perturbation theory. We derive analytical expressions for the full second order relativistic observed redshift, for the angular diameter distance and for the volume spanned by a survey. Finally, we compare our results with previous works which compute the general distance-redshift relation, finding that our result is in agreement at linear order.
180 - Daniele Bertacca 2014
We present a detailed derivation of the observed galaxy number over-density on cosmological scales up to second order in perturbation theory. We include all relativistic effects that arise from observing on the past lightcone. The derivation is in a general gauge, and applies to all dark energy models (including interacting dark energy) and many modified gravity models. The result will be important for accurate cosmological parameter estimation, including non-Gaussianity, since all projection effects need to be taken into account. It also offers the potential for new probes of General Relativity, dark energy and modified gravity. This paper accompanies Paper I which presents the key results for the concordance model in Poisson gauge.
172 - Daniele Bertacca 2014
We present the galaxy number overdensity up to second order in redshift space on cosmological scales for a concordance model. The result contains all general relativistic effects up to second order that arise from observing on the past light cone, in cluding all redshift effects, lensing distortions from convergence and shear, and contributions from velocities, Sachs-Wolfe, integrated SW and time-delay terms. This result will be important for accurate calculation of the bias on estimates of non-Gaussianity and on precision parameter estimates, introduced by nonlinear projection effects.
212 - Daniele Bertacca 2014
We study up to second order the galaxy number over-density that depends on magnification in redshift space on cosmological scales for a concordance model. The result contains all general relativistic effects up to second order which arise from observ ing on the past light cone, including all redshift and lensing distortions, contributions from velocities, Sachs-Wolfe, integrated SW and time-delay terms. We find several new terms and contributions that could be potentially important for an accurate calculation of the bias on estimates of non-Gaussianity and on precision parameter estimates.
Working with perturbations about an FLRW spacetime, we compute the gauge-invariant curvature perturbation to second order solely in terms of scalar field fluctuations. Using the curvature perturbation on uniform density hypersurfaces as our starting point, we give our results in terms of field fluctuations in the flat gauge, incorporating both large and small scale behaviour. For ease of future numerical implementation we give our result in terms of the scalar field fluctuations and their time derivatives.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا