ﻻ يوجد ملخص باللغة العربية
The anisotrpy of the redshift space bispectrum $B^s(mathbf{k_1},mathbf{k_2},mathbf{k_3})$, which contains a wealth of cosmological information, is completely quantified using multipole moments $bar{B}^m_{ell}(k_1,mu,t)$ where $k_1$, the length of the largest side, and $(mu,t)$ respectively quantify the size and shape of the triangle $(mathbf{k_1},mathbf{k_2},mathbf{k_3})$. We present analytical expressions for all the multipoles which are predicted to be non-zero ($ell le 8, m le 6$ ) at second order perturbation theory. The multipoles also depend on $beta_1,b_1$ and $gamma_2$, which quantify the linear redshift distortion parameter, linear bias and quadratic bias respectively. Considering triangles of all possible shapes, we analyse the shape dependence of all of the multipoles holding $k_1=0.2 , {rm Mpc}^{-1}, beta_1=1, b_1=1$ and $gamma_2=0$ fixed. The monopole $bar{B}^0_0$, which is positive everywhere, is minimum for equilateral triangles. $bar{B}_0^0$ increases towards linear triangles, and is maximum for linear triangles close to the squeezed limit. Both $bar{B}^0_{2}$ and $bar{B}^0_4$ are similar to $bar{B}^0_0$, however the quadrupole $bar{B}^0_2$ exceeds $bar{B}^0_0$ over a significant range of shapes. The other multipoles, many of which become negative, have magnitudes smaller than $bar{B}^0_0$. In most cases the maxima or minima, or both, occur very close to the squeezed limit. $mid bar{B}^m_{ell} mid $ is found to decrease rapidly if $ell$ or $m$ are increased. The shape dependence shown here is characteristic of non-linear gravitational clustering. Non-linear bias, if present, will lead to a different shape dependence.
The anisotropy of the redshift space bispectrum contains a wealth of cosmological information. This anisotropy depends on the orientation of three vectors ${bf k_1,k_2,k_3}$ with respect to the line of sight. Here we have decomposed the redshift spac
The large-scale matter distribution in the late-time Universe exhibits gravity-induced non-Gaussianity, and the bispectrum, three-point cumulant is expected to contain significant cosmological information. In particular, the measurement of the bispec
Next-generation galaxy and 21cm intensity mapping surveys will rely on a combination of the power spectrum and bispectrum for high-precision measurements of primordial non-Gaussianity. In turn, these measurements will allow us to distinguish between
Working with perturbations about an FLRW spacetime, we compute the gauge-invariant curvature perturbation to second order solely in terms of scalar field fluctuations. Using the curvature perturbation on uniform density hypersurfaces as our starting
We give an explicit relation, up to second-order terms, between scalar-field fluctuations defined on spatially-flat slices and the curvature perturbation on uniform-density slices. This expression is a necessary ingredient for calculating observable