ﻻ يوجد ملخص باللغة العربية
State-of-the-art theoretical studies anticipate a 2D Dirac system in the heavy analogues of graphene, free-standing buckled honeycomb-like Xenes (X = Si, Ge, Sn, Pb, etc.). Herewith a structurally and electronically resembling 2D sheet, which can be regarded as Xene functionalized by covalent interactions within a 3D periodic structure, is predicted to constitute a 3D strong topological insulator with Z2 = 1;(111) (primitive cell, rhombohedral setting) in the structural family of layered AXTe (A = Ga, In; X = Ge, Sn) bulk materials. The host structure GaGeTe is a long-known bulk semiconductor; the heavy, isostructural analogues InSnTe and GaSnTe are predicted to be dynamically stable. Spin-orbit interaction in InSnTe opens a small topological band gap with inverted gap edges that are mainly composed of the In-5s and Te-5p states. Our simulations classify GaSnTe as a semimetal with topological properties, whereas the verdict for GaGeTe is not conclusive and urges further experimental verification. AXTe family structures can be regarded as stacks of 2D layered cut-outs from a zincblende-type lattice and are composed by elements that are broadly used in modern semiconductor devices; hence they represent an accessible, attractive alternative for applications in spintronics. The layered nature of AXTe should facilitate exfoliation of its hextuple layers and manufacture of heterostuctures.
We investigated theoretically the effect of covalent edge functionalization, with organic functional groups, on the electronic properties of graphene nanostructures and nano-junctions. Our analysis shows that functionalization can be designed to tune
From first principles calculations, we investigate the stability and physical properties of single layer h-BN sheet chemically functionalized by various groups viz. H, F, OH, CH3, CHO, CN, NH2 etc. We find that full functionalization of h-BN sheet wi
Quantum anomalous Hall (QAH) effect generates quantized electric charge Hall conductance without external magnetic field. It requires both nontrivial band topology and time-reversal symmetry (TRS) breaking. In most cases, one could break the TRS of t
The best p-type skutterudites so far are didymium filled, Fe/Co substituted, Sb-based skutterudites. Substitution at the Sb-sites influences the electronic structure, deforms the Sb4-rings, enhances the scattering of phonons on electrons and impuriti
The main scientific activity in the field of topological insulators (TIs) consists of determining their electronic structure by means of magneto-transport and electron spectroscopy with a view to devices based on topological transport. There is howev