ﻻ يوجد ملخص باللغة العربية
The best p-type skutterudites so far are didymium filled, Fe/Co substituted, Sb-based skutterudites. Substitution at the Sb-sites influences the electronic structure, deforms the Sb4-rings, enhances the scattering of phonons on electrons and impurities and this way reduces the lattice thermal conductivity. In this paper we study structural and transport properties of p-type skutterudites with the nominal composition DD0.7Fe2.7Co1.3Sb11.7{Ge/Sn}0.3, which were prepared by a rather fast reaction-annealing-melting technique. The Ge-doped sample showed impurities, which did not anneal out completely and even with ZT > 1 the result was not satisfying. However, the single-phase Sn-doped sample, DD0.7Fe2.7Co1.3Sb11.8Sn0.2, showed a lower thermal and lattice thermal conductivity than the undoped skutterudite leading to a higher ZT=1.3, hitherto the highest ZT for a p-type skutterudite. Annealing at 570 K for 3 days proved the stability of the microstructure. After severe plastic deformation (SPD), due to additionally introduced defects, an enhancement of the electrical resistivity was compensated by a significantly lower thermal conductivity and the net effect led to a record high figure of merit: ZT = 1.45 at 850 K for DD0.7Fe2.7Co1.3Sb11.8Sn0.2.
The efficiency of energy conversion in thermoelectric generators (TEGs) is directly proportional to electrical conductivity and Seebeck coefficient while inversely to thermal conductivity. The challenge is to optimize these interdependent parameters
Novel filled skutterudites EpyNi4Sb12-xSnx (Ep = Ba and La) have been prepared by arc melting followed by annealing at 250C, 350C and 450C up to 30 days in sealed quartz vials. A maximum filling level of y = 0.93 and y = 0.65 was achieved for the Ba
Ge with a quasi-direct band gap can be realized by strain engineering, alloying with Sn, or ultrahigh n-type doping. In this work, we use all three approaches together to fabricate direct-band-gap Ge-Sn alloys. The heavily doped n-type Ge-Sn is reali
State-of-the-art theoretical studies anticipate a 2D Dirac system in the heavy analogues of graphene, free-standing buckled honeycomb-like Xenes (X = Si, Ge, Sn, Pb, etc.). Herewith a structurally and electronically resembling 2D sheet, which can be
The recent discoveries of strikingly large zero-field Hall and Nernst effects in antiferromagnets Mn$_3$$X$, ($X$ = Sn, Ge) have brought the study of magnetic topological states to the forefront of condensed matter research and technological innovati