ترغب بنشر مسار تعليمي؟ اضغط هنا

Band gap engineering by functionalization of BN sheet

146   0   0.0 ( 0 )
 نشر من قبل Saswata Bhattacharya
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From first principles calculations, we investigate the stability and physical properties of single layer h-BN sheet chemically functionalized by various groups viz. H, F, OH, CH3, CHO, CN, NH2 etc. We find that full functionalization of h-BN sheet with these groups lead to decrease in its electronic band gap, albeit to different magnitudes varying from 0.3 eV to 3.1 eV, depending upon the dopant group. Functionalization by CHO group, in particular, leads to a sharp decrease in the electronic band gap of the pristine BN sheet to ~ 0.3 eV, which is congenial for its usage in transistor based devices. The phonon calculations on these sheets show that frequencies corresponding to all their vibrational modes are real (positive), thereby suggesting their inherent stability. The chemisorption energies of these groups to the B and N atoms of the sheet are found to lie in the range of 1.5 -6 eV.



قيم البحث

اقرأ أيضاً

Strain induced band gap deformations of hydrogenated/fluorinated graphene and hexagonal BN sheet have been investigated using first principles density functional calculations. Within harmonic approximation, the deformation is found to be higher for h ydrogenated systems than for the fluorinated systems. Interestingly, our calculated band gap deformation for hydrogenated/fluorinated graphene and BN sheets are positive, while those for pristine graphene and BN sheet are found to be negative. This is due to the strong overlap between nearest neighbor {pi} orbitals in the pristine sheets, that is absent in the passivated systems. We also estimate the intrinsic strength of these materials under harmonic uniaxial strain, and find that the in-plane stiffness of fluorinated and hydrogenated graphene are close, but larger in magnitude as compared to those of fluorinated and hydrogenated BN sheet.
98 - Zhishuo Huang , Wenxu Zhang , 2016
Besides its predicted promising high electron mobilities at room temperature, PtSe2 bandgap sensitively depends on the number of monolayers combined by van der Waals interaction according to our calculations. We understand this by using bandstructure calculations based on the density functional theory. It was found that the front orbitals of VBM and CBM are contributed mainly from pz and px+y orbitals of Se which are sensitive to the out-plane and in-plane lattice constants, respectively. The van der Waals force enhances the bonding out-of-plane, which in-turn influences the bonding in-plane. We found that the thickness dependent bandgap has the same origin as the strain dependent bandgap, which is from the change of the front orbital interactions. The work shows the flexibilities of tuning the electronic and optical properties of this compound in a wide range.
Chemical functionalization is a promising route to band gap engineering of graphene. We chemically grafted nitrophenyl groups onto exfoliated single-layer graphene sheets in the form of substrate-supported or free-standing films. Our transport measur ements demonstrate that non-suspended functionalized graphene behaves as a granular metal, with variable range hopping transport and a mobility gap ~ 0.1 eV at low temperature. For suspended graphene that allows functionalization on both surfaces, we demonstrate tuning of its electronic properties from a granular metal to a gapped semiconductor, in which charge transport occurs via thermal activation over a gap ~ 80 meV. This non-invasive and scalable functionalization technique paves the way for CMOS-compatible band gap engineering of graphene electronic devices.
121 - J. Zhou , Q. Wang , Q. Sun 2009
Using density functional theory we show that an applied electric field substantially improves the hydrogen storage properties of a BN sheet by polarizing the hydrogen molecules as well as the substrate. The adsorption energy of a single H2 molecule i n the presence of an electric field of 0.05 a.u. is 0.48 eV compared to 0.07 eV in its absence. When one layer of H2 molecules is adsorbed, the binding energy per H2 molecule increases from 0.03 eV in the field-free case to 0.14 eV/H2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt % is consistent with the 6 wt % system target set by DOE for 2010. Once the applied electric field is removed, the stored H2 molecules can be easily released, thus making the storage reversible.
The role of defects in van der Waals heterostructures made of graphene and hexagonal boron nitride (h-BN) is studied by a combination of ab initio and model calculations. Despite the weak van der Waals interaction between layers, defects residing in h-BN, such as carbon impurities and antisite defects, reveal a hybridization with graphene p$_{rm z}$ states, leading to midgap state formation. The induced midgap states modify the transport properties of graphene and can be reproduced by means of a simple effective tight-binding model. In contrast to carbon defects, it is found that oxygen defects do not strongly hybridize with graphenes low-energy states. Instead, oxygen drastically modifies the band gap of graphene, which emerges in a commensurate stacking on h-BN lattices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا