ﻻ يوجد ملخص باللغة العربية
Usually when applying the mimetic model to the early universe, higher derivative terms are needed to promote the mimetic field to be dynamical. However such models suffer from the ghost and/or the gradient instabilities and simple extensions cannot cure this pathology. We point out in this paper that it is possible to overcome this difficulty by considering the direct couplings of the higher derivatives of the mimetic field to the curvature of the spacetime.
Two types of mimetic gravity models with higher derivatives of the mimetic field are analyzed in the Hamiltonian formalism. For the first type of mimetic gravity, the Ricci scalar only couples to the mimetic field and we demonstrate the number of deg
We study inflationary solution in an extension of mimetic gravity with the higher derivative interactions coupled to gravity. Because of the higher derivative interactions, the setup is free from the ghost and gradient instabilities while it hosts a
We study (covariant) scalar-vector-tensor (SVT) perturbations of infinite derivative gravity (IDG), at the quadratic level of the action, around conformally-flat, covariantly constant curvature backgrounds which are not maximally symmetric spacetimes
The recent observation of the the gravitational wave event GW170817 and of its electromagnetic counterpart GRB170817A, from a binary neutron star merger, has established that the speed of gravitational waves deviates from the speed of light by less t
In this paper, we extend the mimetic gravity to the multi-field setup with a curved field space manifold. The multi-field mimetic scenario is realized via the singular limit of the conformal transformation between the auxiliary and the physical metri