ﻻ يوجد ملخص باللغة العربية
The recent observation of the the gravitational wave event GW170817 and of its electromagnetic counterpart GRB170817A, from a binary neutron star merger, has established that the speed of gravitational waves deviates from the speed of light by less than one part in $10^{15}$. As a consequence, many extensions of General Relativity are inevitably ruled out. Among these we find the most relevant sectors of Horndeski gravity. In its original formulation, mimetic gravity is able to mimic cosmological dark matter, has tensorial perturbations that travel exactly at the speed of light but has vanishing scalar perturbations and this fact persists if we combine mimetic with Horndeski gravity. In this work, we show that implementing the mimetic gravity action with higher-order terms that break the Horndeski structure yields a cosmological model that satisfies the constraint on the speed of gravitational waves and mimics both dark energy and dark matter with a non-vanishing speed of sound. In this way, we are able to reproduce the $Lambda$CDM cosmological model without introducing particle cold dark matter.
Phenomenological implications of the Mimetic Tensor-Vector-Scalar theory (MiTeVeS) are studied. The theory is an extension of the vector field model of mimetic dark matter, where a scalar field is also incorporated, and it is known to be free from gh
The gravitational-wave event GW170817 from a binary neutron star merger together with the electromagnetic counterpart showed that the speed of gravitational waves $c_t$ is very close to that of light for the redshift $z<0.009$. This places tight cons
It has been shown that the nonthermal spectrum of Hawking radiation will lead to information-carrying correlations between emitted particles in the radiation. The mutual information carried by such correlations can not be locally observed and hence i
Non-canonical scalar fields with the Lagrangian ${cal L} = X^alpha - V(phi)$, possess the attractive property that the speed of sound, $c_s^{2} = (2,alpha - 1)^{-1}$, can be exceedingly small for large values of $alpha$. This allows a non-canonical f
Recently, Kallosh and Linde have drawn attention to a new family of superconformal inflationary potentials, subsequently called $alpha$-attractors. The $alpha$-attractor family can interpolate between a large class of inflationary models. It also has