ﻻ يوجد ملخص باللغة العربية
In this paper, we extend the mimetic gravity to the multi-field setup with a curved field space manifold. The multi-field mimetic scenario is realized via the singular limit of the conformal transformation between the auxiliary and the physical metrics. We look for the cosmological implications of the setup where it is shown that at the background level the mimetic energy density mimics the roles of dark matter. At the perturbation level, the scalar field perturbations are decomposed into the tangential and normal components with respect to the background field space trajectory. The adiabatic perturbation tangential to the background trajectory is frozen while the entropy mode perpendicular to the background trajectory propagates with the speed of unity. Whether or not the entropy perturbation is healthy directly depends on the signature of the field-space metric. We perform the full non-linear Hamiltonian analysis of the system with the curved field space manifold and calculate the physical degrees of freedom verifying that the system is free from the Ostrogradsky-type ghost.
We revisit the two-field mimetic gravity model with shift symmetries recently proposed in the literature, especially the problems of degrees of freedom and stabilities. We first study the model at the linear cosmological perturbation level by quadrat
We discuss mimetic gravity theories with direct couplings between the curvature and higher derivatives of the scalar field, up to the quintic order, which were proposed to solve the instability problem for linear perturbations around the FLRW backgro
We propose a novel class of degenerate higher-order scalar-tensor theories as an extension of mimetic gravity. By performing a noninvertible conformal transformation on seed scalar-tensor theories which may be nondegenerate, we can generate a large c
Two types of mimetic gravity models with higher derivatives of the mimetic field are analyzed in the Hamiltonian formalism. For the first type of mimetic gravity, the Ricci scalar only couples to the mimetic field and we demonstrate the number of deg
We study inflationary solution in an extension of mimetic gravity with the higher derivative interactions coupled to gravity. Because of the higher derivative interactions, the setup is free from the ghost and gradient instabilities while it hosts a