ﻻ يوجد ملخص باللغة العربية
In this paper we investigate the computational complexity of deciding if a given finite algebraic structure satisfies a fixed (strong) Maltsev condition $Sigma$. Our goal in this paper is to show that $Sigma$-testing can be accomplished in polynomial time when the algebras tested are idempotent and the Maltsev condition $Sigma$ can be described using paths. Examples of such path conditions are having a Maltsev term, having a majority operation, and having a chain of Jonsson (or Gumm) terms of fixed length.
We show that for a fixed positive integer k one can efficiently decide if a finite algebra A admits a k-ary weak near unanimity operation by looking at the local behavior of the terms of A. We also observe that the problem of deciding if a given fini
We characterize absorption in finite idempotent algebras by means of Jonsson absorption and cube term blockers. As an application we show that it is decidable whether a given subset is an absorbing subuniverse of an algebra given by the tables of its basic operations.
We study the problem of whether a given finite algebra with finitely many basic operations contains a cube term; we give both structural and algorithmic results. We show that if such an algebra has a cube term then it has a cube term of dimension at
The aim of this note is to describe the structure of finite meadows. We will show that the class of finite meadows is the closure of the class of finite fields under finite products. As a corollary, we obtain a unique representation of minimal meadows in terms of prime fields.
In this paper, by using the Composition-Diamond lemma for non-associative algebras invented by A. I. Shirshov in 1962, we give Gr{o}bner-Shirshov bases for free Pre-Lie algebras and the universal enveloping non-associative algebra of an Akivis algebr