ﻻ يوجد ملخص باللغة العربية
We show that for a fixed positive integer k one can efficiently decide if a finite algebra A admits a k-ary weak near unanimity operation by looking at the local behavior of the terms of A. We also observe that the problem of deciding if a given finite algebra has a quasi Taylor operation is solvable in polynomial time by looking, essentially, for local quasi Siggers operations.
We study the problem of whether a given finite algebra with finitely many basic operations contains a cube term; we give both structural and algorithmic results. We show that if such an algebra has a cube term then it has a cube term of dimension at
In this paper we investigate the computational complexity of deciding if a given finite algebraic structure satisfies a fixed (strong) Maltsev condition $Sigma$. Our goal in this paper is to show that $Sigma$-testing can be accomplished in polynomial
This paper investigates the computational complexity of deciding if a given finite idempotent algebra has a ternary term operation $m$ that satisfies the minority equations $m(y,x,x) approx m(x,y,x) approx m(x,x,y) approx y$. We show that a common po
We characterize absorption in finite idempotent algebras by means of Jonsson absorption and cube term blockers. As an application we show that it is decidable whether a given subset is an absorbing subuniverse of an algebra given by the tables of its basic operations.
For some Maltsev conditions $Sigma$ it is enough to check if a finite algebra $mathbf A$ satisfies $Sigma$ locally on subsets of bounded size, in order to decide, whether $mathbf A$ satisfies $Sigma$ (globally). This local-global property is the main