ﻻ يوجد ملخص باللغة العربية
The aim of this note is to describe the structure of finite meadows. We will show that the class of finite meadows is the closure of the class of finite fields under finite products. As a corollary, we obtain a unique representation of minimal meadows in terms of prime fields.
Let Q_0 denote the rational numbers expanded to a meadow, that is, after taking its zero-totalized form (0^{-1}=0) as the preferred interpretation. In this paper we consider cancellation meadows, i.e., meadows without proper zero divisors, such as $Q
A meadow is a zero totalised field (0^{-1}=0), and a cancellation meadow is a meadow without proper zero divisors. In this paper we consider differential meadows, i.e., meadows equipped with differentiation operators. We give an equational axiomatiza
A emph{meadow} is a commutative ring with an inverse operator satisfying $0^{-1}=0$. We determine the initial algebra of the meadows of characteristic 0 and show that its word problem is decidable.
Meadows - commutative rings equipped with a total inversion operation - can be axiomatized by purely equational means. We study subvarieties of the variety of meadows obtained by extending the equational theory and expanding the signature.
We consider the signatures $Sigma_m=(0,1,-,+, cdot, ^{-1})$ of meadows and $(Sigma_m, {mathbf s})$ of signed meadows. We give two complete axiomatizations of the equational theories of the real numbers with respect to these signatures. In the first