ﻻ يوجد ملخص باللغة العربية
We consider a two-dimensional electron gas with strong spin-orbit coupling contacted by two superconducting leads, forming a Josephson junction. We show that in the presence of an in-plane Zeeman field the quasi-one-dimensional region between the two superconductors can support a topological superconducting phase hosting Majorana bound states at its ends. We study the phase diagram of the system as a function of the Zeeman field and the phase difference between the two superconductors (treated as an externally controlled parameter). Remarkably, at a phase difference of $pi$, the topological phase is obtained for almost any value of the Zeeman field and chemical potential. In a setup where the phase is not controlled externally, we find that the system undergoes a first-order topological phase transition when the Zeeman field is varied. At the transition, the phase difference in the ground state changes abruptly from a value close to zero, at which the system is trivial, to a value close to $pi$, at which the system is topological. The critical current through the junction exhibits a sharp minimum at the critical Zeeman field, and is therefore a natural diagnostic of the transition. We point out that in presence of a symmetry under a modified mirror reflection followed by time reversal, the system belongs to a higher symmetry class and the phase diagram as a function of the phase difference and the Zeeman field becomes richer.
Majorana zero modes are quasiparticle states localized at the boundaries of topological superconductors that are expected to be ideal building blocks for fault-tolerant quantum computing. Several observations of zero-bias conductance peaks measured i
We theoretically study topological planar Josephson junctions (JJs) formed from spin-orbit-coupled two-dimensional electron gases (2DEGs) proximitized by two superconductors and subjected to an in-plane magnetic field $B_parallel$. Compared to previo
We show that the time reversal symmetry inevitably breaks in a superconducting Josephson junction formed by two superconductors with different pairing symmetries dubbed as i-Josephson junction. While the leading conventional Josephson coupling vanish
Topological superconductivity in quasi-one-dimensional systems is a novel phase of matter with possible implications for quantum computation. Despite years of effort, a definitive signature of this phase in experiments is still debated. A major cause
The phase-dependent bound states (Andreev levels) of a Josephson junction can cross at the Fermi level, if the superconducting ground state switches between even and odd fermion parity. The level crossing is topologically protected, in the absence of