ترغب بنشر مسار تعليمي؟ اضغط هنا

Josephson photonics with a two-mode superconducting circuit

135   0   0.0 ( 0 )
 نشر من قبل Bjoern Kubala
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the quantum dynamics of two electromagnetic oscillators coupled in series to a voltage biased Josephson junction. When the applied voltage leads to a Josephson frequency across the junction which matches the sum of the two mode frequencies, tunneling Cooper pairs excite photons in both modes simultaneously leading to far-from-equilibrium states. These states display highly non-classical features including strong anti-bunching, violation of Cauchy-Schwartz inequalities, and number squeezing. The regimes of low and high photon occupancies allow for analytical results which are supported by a full numerical treatment. The impact of asymmetries between the two modes is explored, revealing a pronounced enhancement of number squeezing when the modes are damped at different rates.



قيم البحث

اقرأ أيضاً

We introduce a systematic formalism for two-resonator circuit QED, where two on-chip microwave resonators are simultaneously coupled to one superconducting qubit. Within this framework, we demonstrate that the qubit can function as a quantum switch b etween the two resonators, which are assumed to be originally independent. In this three-circuit network, the qubit mediates a geometric second-order circuit interaction between the otherwise decoupled resonators. In the dispersive regime, it also gives rise to a dynamic second-order perturbative interaction. The geometric and dynamic coupling strengths can be tuned to be equal, thus permitting to switch on and off the interaction between the two resonators via a qubit population inversion or a shifting of the qubit operation point. We also show that our quantum switch represents a flexible architecture for the manipulation and generation of nonclassical microwave field states as well as the creation of controlled multipartite entanglement in circuit QED. In addition, we clarify the role played by the geometric interaction, which constitutes a fundamental property characteristic of superconducting quantum circuits without counterpart in quantum-optical systems. We develop a detailed theory of the geometric second-order coupling by means of circuit transformations for superconducting charge and flux qubits. Furthermore, we show the robustness of the quantum switch operation with respect to decoherence mechanisms. Finally, we propose a realistic design for a two-resonator circuit QED setup based on a flux qubit and estimate all the related parameters. In this manner, we show that this setup can be used to implement a superconducting quantum switch with available technology.
Electromagnetic signals are always composed of photons, though in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photons energy is usually not evident. However, by coupling a superconductin g qubit to signals on a microwave transmission line, it is possible to construct an integrated circuit where the presence or absence of even a single photon can have a dramatic effect. This system is called circuit quantum electrodynamics (QED) because it is the circuit equivalent of the atom-photon interaction in cavity QED. Previously, circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit can absorb and re-emit a single photon many times. Here, we report a circuit QED experiment which achieves the strong dispersive limit, a new regime of cavity QED in which a single photon has a large effect on the qubit or atom without ever being absorbed. The hallmark of this strong dispersive regime is that the qubit transition can be resolved into a separate spectral line for each photon number state of the microwave field. The strength of each line is a measure of the probability to find the corresponding photon number in the cavity. This effect has been used to distinguish between coherent and thermal fields and could be used to create a photon statistics analyzer. Since no photons are absorbed by this process, one should be able to generate non-classical states of light by measurement and perform qubit-photon conditional logic, the basis of a logic bus for a quantum computer.
Heat is detrimental for the operation of quantum systems, yet it fundamentally behaves according to quantum mechanics, being phase coherent and universally quantum-limited regardless of its carriers. Due to their robustness, superconducting circuits integrating dissipative elements are ideal candidates to emulate many-body phenomena in quantum heat transport, hitherto scarcely explored experimentally. However, their ability to tackle the underlying full physical richness is severely hindered by the exclusive use of a magnetic flux as a control parameter and requires complementary approaches. Here, we introduce a dual, magnetic field-free circuit where charge quantization in a superconducting island enables thorough electric field control. We thus tune the thermal conductance, close to its quantum limit, of a single photonic channel between two mesoscopic reservoirs. We observe heat flow oscillations originating from the competition between Cooper-pair tunnelling and Coulomb repulsion in the island, well captured by a simple model. Our results demonstrate that the duality between charge and flux extends to heat transport, with promising applications in thermal management of quantum devices.
By coupling a superconducting weak link to a microwave resonator, recent experiments probed the spectrum and achieved the quantum manipulation of Andreev states in various systems. However, the quantitative understanding of the response of the resona tor to changes in the occupancy of the Andreev levels, which are of fermionic nature, is missing. Here, using Bogoliubov-de Gennes formalism to describe the weak link and a general formulation of the coupling to the resonator, we calculate the shift of the resonator frequency as a function of the levels occupancy and describe how transitions are induced by phase or electric field microwave drives. We apply this formalism to analyze recent experimental results obtained using circuit-QED techniques on superconducting atomic contacts and semiconducting nanowire Josephson junctions.
We present a method for measuring the internal state of a superconducting qubit inside an on-chip microwave resonator. We show that one qubit state can be associated with the generation of an increasingly large cavity coherent field, while the other remains associated with the vacuum. By measuring the outgoing resonator field with conventional devices, an efficient single-shot QND-like qubit readout can be achieved, enabling a high-fidelity measurement in the spirit of the electron-shelving technique for trapped ions. We expect that the proposed ideas can be adapted to different superconducting qubit designs and contribute to the further improvement of qubit readout fidelity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا