ﻻ يوجد ملخص باللغة العربية
We study the second-order phase transition in the $d$-dimensional Ising model with long-range interactions decreasing as a power of the distance $1/r^{d+s}$. For $s$ below some known value $s_*$, the transition is described by a conformal field theory without a local stress tensor operator, with critical exponents varying continuously as functions of $s$. At $s=s_*$, the phase transition crosses over to the short-range universality class. While the location $s_*$ of this crossover has been known for 40 years, its physics has not been fully understood, the main difficulty being that the standard description of the long-range critical point is strongly coupled at the crossover. In this paper we propose another field-theoretic description which, on the contrary, is weakly coupled near the crossover. We use this description to clarify the nature of the crossover and make predictions about the critical exponents. That the same long-range critical point can be reached from two different UV descriptions provides a new example of infrared duality.
We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power sigma of the distance. We show that there is a value of sigma of the long-range model for which the critical
We consider trapped bosons with contact interactions as well as Coulomb repulsion or gravitational attraction in one spatial dimension. The exact ground state energy and wave function are identified in closed form together with a rich phase diagram,
We investigate an extension of the quantum Ising model in one spatial dimension including long-range $1 / r^{alpha}$ interactions in its statics and dynamics with possible applications from heteronuclear polar molecules in optical lattices to trapped
We compute the three-loop beta functions of long-range multi-scalar models with general quartic interactions. The long-range nature of the models is encoded in a kinetic term with a Laplacian to the power $0<zeta<1$, rendering the computation of Feyn
We construct a class of backgrounds with a warp factor and anti-de Sitter asymptotics, which are dual to boundary systems that have a ground state with a short-range two-point correlation function. The solutions of probe scalar fields on these backgr