ﻻ يوجد ملخص باللغة العربية
We construct a class of backgrounds with a warp factor and anti-de Sitter asymptotics, which are dual to boundary systems that have a ground state with a short-range two-point correlation function. The solutions of probe scalar fields on these backgrounds are obtained by means of confluent hypergeometric functions. The explicit analytical expressions of a class of short-range correlation functions on the boundary and the correlation lengths $xi$ are derived from gravity computation. The two-point function calculated from gravity side is explicitly shown to exponentially decay with respect to separation in the infrared. Such feature inevitably appears in confining gauge theories and certain strongly correlated condensed matter systems.
Pair densities and associated correlation functions provide a critical tool for introducing many-body correlations into a wide-range of effective theories. Ab initio calculations show that two-nucleon pair-densities exhibit strong spin and isospin de
We formulate the baby universe construction rigorously by giving a primordial role to the algebra of observables of quantum gravity rather than the Hilbert space. Utilizing diffeomorphism invariance, we study baby universe creation and annihilation v
We study the second-order phase transition in the $d$-dimensional Ising model with long-range interactions decreasing as a power of the distance $1/r^{d+s}$. For $s$ below some known value $s_*$, the transition is described by a conformal field theor
We construct analytic solutions of Einstein gravity coupled to a dilaton field with a potential given by a sum of two exponentials, by rewriting the equations of motion in terms of an integrable Toda chain. These solutions can be interpreted as domai