ترغب بنشر مسار تعليمي؟ اضغط هنا

The correspondence between long-range and short-range spin glasses

208   0   0.0 ( 0 )
 نشر من قبل A. Peter Young
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power sigma of the distance. We show that there is a value of sigma of the long-range model for which the critical behavior is very similar to that of the short-range model in four dimensions. We also study a value of sigma for which we find the critical behavior to be compatible with that of the three dimensional model, though we have much less precision than in the four-dimensional case.



قيم البحث

اقرأ أيضاً

87 - D. E. Feldman 2000
The paper contains a rigorous proof of the absence of quasi-long-range order in the random-field O(N) model for strong disorder in the space of an arbitrary dimensionality. This result implies that quasi-long-range order inherent to the Bragg glass p hase of the vortex system in disordered superconductors is absent as the disorder or external magnetic field is strong.
We use high temperature series expansions to study the $pm J$ Ising spin-glass in a magnetic field in $d$-dimensional hypercubic lattices for $d=5, 6, 7$ and $8$, and in the infinite-range Sherrington-Kirkpatrick (SK) model. The expansions are obtain ed in the variable $w=tanh^2{J/T}$ for arbitrary values of $u=tanh^2{h/T}$ complete to order $w^{10}$. We find that the scaling dimension $Delta$ associated with the ordering-field $h^2$ equals $2$ in the SK model and for $dge 6$. However, in agreement with the work of Fisher and Sompolinsky, there is a violation of scaling in a finite field, leading to an anomalous $h$-$T$ dependence of the Almeida-Thouless (AT) line in high dimensions, while scaling is restored as $d to 6$. Within the convergence of our series analysis, we present evidence supporting an AT line in $dge 6$. In $d=5$, the exponents $gamma$ and $Delta$ are substantially larger than mean-field values, but we do not see clear evidence for the AT line in $d=5$.
We use Monte Carlo simulations to study the one-dimensional long-range diluted Heisenberg spin glass with interactions that fall as a power, sigma, of the distance. Varying the power is argued to be equivalent to varying the space dimension of a shor t-range model. We are therefore able to study both the mean-field and non-mean-field regimes. For one value of sigma, in the non-mean-field regime, we find evidence that the chiral glass transition temperature may be somewhat higher than the spin glass transition temperature. For the other values of sigma we see no evidence for this.
88 - C.M. Newman 2003
In this topical review we discuss the nature of the low-temperature phase in both infinite-ranged and short-ranged spin glasses. We analyze the meaning of pure states in spin glasses, and distinguish between physical, or ``observable, states and (pro bably) unphysical, ``invisible states. We review replica symmetry breaking, and describe what it would mean in short-ranged spin glasses. We introduce the notion of thermodynamic chaos, which leads to the metastate construct. We apply these tools to short-ranged spin glasses, and conclude that replica symmetry breaking, in any form, cannot describe the low-temperature spin glass phase in any finite dimension. We then discuss the remaining possible scenarios that_could_ describe the low-temperature phase, and the differences they exhibit in some of their physical properties -- in particular, the interfaces that separate them. We also present rigorous results on metastable states and discuss their connection to thermodynamic states. Finally, we discuss some of the differences between the statistical mechanics of homogeneous systems and those with quenched disorder and frustration.
We present results of numerical simulations on a one-dimensional Ising spin glass with long-range interactions. Parameters of the model are chosen such that it is a proxy for a short-range spin glass above the upper critical dimension (i.e. in the me an-field regime). The system is quenched to a temperature well below the transition temperature $T_c$ and the growth of correlations is observed. The spatial decay of the correlations at distances less than the dynamic correlation length $xi(t)$ agrees quantitatively with the predictions of a static theory, the metastate, evaluated according to the replica symmetry breaking (RSB) theory. We also compute the dynamic exponent $z(T)$ defined by $xi(t) propto t^{1/z(T)}$ and find that it is compatible with the mean-field value of the critical dynamical exponent for short range spin glasses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا