ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain and Band-Gap Engineering in Ge-Sn Alloys via P Doping

110   0   0.0 ( 0 )
 نشر من قبل Shengqiang Zhou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ge with a quasi-direct band gap can be realized by strain engineering, alloying with Sn, or ultrahigh n-type doping. In this work, we use all three approaches together to fabricate direct-band-gap Ge-Sn alloys. The heavily doped n-type Ge-Sn is realized with CMOS-compatible nonequilibrium material processing. P is used to form highly doped n-type Ge-Sn layers and to modify the lattice parameter of P-doped Ge-Sn alloys. The strain engineering in heavily-P-doped Ge-Sn films is confirmed by x-ray diffraction and micro Raman spectroscopy. The change of the band gap in P-doped Ge-Sn alloy as a function of P concentration is theoretically predicted by density functional theory and experimentally verified by near-infrared spectroscopic ellipsometry. According to the shift of the absorption edge, it is shown that for an electron concentration greater than 1x10^20 cm-3 the band-gap renormalization is partially compensated by the Burstein-Moss effect. These results indicate that Ge-based materials have high potential for use in near-infrared optoelectronic devices, fully compatible with CMOS technology.



قيم البحث

اقرأ أيضاً

139 - Y. S. Hou , S. Ardo , 2021
Perovskite SrTiO3 (STO) is an attractive photocatalyst for solar water splitting, but suffers from a limited photoresponse in the ultraviolet spectral range due to its wide band gap. By means of hybrid density functional theory calculations, we syste matically study engineering its band gap via doping 4d and 5d transition metals M (M=Zr, Nb, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt) and chalcogen elements Y (Y=S and Se). We find that transition metal dopant M either has no effect on STO band gap or introduces detrimental mid-gap states, except for Pd and Pt that are able to reduce the STO band gap. In contrast, doping S and Se significantly reduces STOs direct band gap, thus leading to appreciable optical absorption transitions in the visible spectral range. Our findings provide that Pd, S and Se doped STO are potential promising photocatalysts for water splitting under visible light irradiation, thereby providing insightful theoretical guides for experiments to improve the photocatalytic activity of STO.
98 - Zhishuo Huang , Wenxu Zhang , 2016
Besides its predicted promising high electron mobilities at room temperature, PtSe2 bandgap sensitively depends on the number of monolayers combined by van der Waals interaction according to our calculations. We understand this by using bandstructure calculations based on the density functional theory. It was found that the front orbitals of VBM and CBM are contributed mainly from pz and px+y orbitals of Se which are sensitive to the out-plane and in-plane lattice constants, respectively. The van der Waals force enhances the bonding out-of-plane, which in-turn influences the bonding in-plane. We found that the thickness dependent bandgap has the same origin as the strain dependent bandgap, which is from the change of the front orbital interactions. The work shows the flexibilities of tuning the electronic and optical properties of this compound in a wide range.
N-type Bi100-xSbx alloys have the highest thermoelectric figure of merit (zT) of all materials below 200K; here we investigate how filling multiple valence band pockets at T and H-points of the Brillouin zone produces high zT in p-type Sn-doped mater ial. This approach, theoretically predicted to potentially give zT>1 in Bi, was used successfully in PbTe. We report thermopower, electrical and thermal conductivity (2 to 400K) of single crystals with 12<x<37 and polycrystals (x=50-90), higher Sb concentrations than previous studies. We obtain a 60% improvement in zT to 0.13.
We report on a systematic study of the temperature-dependent Hall coefficient and thermoelectric power in ultra-thin metallic LaNiO$_3$ films that reveal a strain-induced, self-doping carrier transition that is inaccessible in the bulk. As the film s train varies from compressive to tensile at fixed composition and stoichiometry, the transport coefficients evolve in a manner strikingly similar to those of bulk hole-doped superconducting cuprates with varying doping level. Density functional calculations reveal that the strain-induced changes in the transport properties are due to self-doping in the low-energy electronic band structure. The results imply that thin-film epitaxy can serve as a new means to achieve hole-doping in other (negative) charge-transfer gap transition metal oxides without resorting to chemical substitution.
Through a combination of thin film growth, hard X-ray photoelectron spectroscopy (HAXPES), scanning transmission electron microscopy/electron energy loss spectroscopy (STEM/EELS), magneto-transport measurements, and transport modeling, we report on t he demonstration of modulation-doping of BaSnO3 (BSO) using a wider bandgap La-doped SrSnO3 (LSSO) layer. Hard X-ray photoelectron spectroscopy (HAXPES) revealed a valence band offset of 0.71 +/- 0.02 eV between LSSO and BSO resulting in a favorable conduction band offset for remote doping of BSO using LSSO. Nonlinear Hall effect of LSSO/BSO heterostructure confirmed two-channel conduction owing to electron transfer from LSSO to BSO and remained in good agreement with the results of self-consistent solution to one-dimensional Poisson and Schrodinger equations. Angle-dependent HAXPES measurements revealed a spatial distribution of electrons over 2-3 unit cells in BSO. These results bring perovskite oxides a step closer to room-temperature oxide electronics by establishing modulation-doping approaches in non-SrTiO3-based oxide heterostructure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا