ﻻ يوجد ملخص باللغة العربية
The Sagdeev-Zaslavski (SZ) equation for wave turbulence is analytically derived, both in terms of generating function and of multi-point pdf, for weakly interacting waves with initial random phases. When also initial amplitudes are random, the one-point pdf equation is derived. Such analytical calculations remarkably agree with results obtained in totally different fashions. Numerical investigations of the two-dimensional nonlinear Schroedinger equation (NLSE) and of a vibrating plate prove that: (i) generic Hamiltonian 4-wave systems rapidly attain a random distribution of phases independently of the slower dynamics of the amplitudes, vindicating the hypothesis of initially random phases; (ii) relaxation of the Fourier amplitudes to the predicted stationary distribution (exponential) happens on a faster timescale than relaxation of the spectrum (Rayleigh-Jeans distribution); (iii) the pdf equation correctly describes dynamics under different forcings: the NLSE has an exponential pdf corresponding to a quasi-gaussian solution, like the vibrating plates, that also show some intermittency at very strong forcings.
The nonlinear dynamics of waves at the sea surface is believed to be ruled by the Weak Turbulence framework. In order to investigate the nonlinear coupling among gravity surface waves, we developed an experiment in the Coriolis facility which is a 13
A recent experiment [Deng et al., Nature 398, 218(1999)] demonstrated four-wave mixing of matter wavepackets created from a Bose-Einstein condensate. The experiment utilized light pulses to create two high-momentum wavepackets via Bragg diffraction f
We consider a diatomic chain characterized by a cubic anharmonic potential. After diagonalizing the harmonic case, we study in the new canonical variables, the nonlinear interactions between the acoustical and optical branches of the dispersion relat
A fourth-order and a second-order nonlinear diffusion models in spectral space are proposed to describe gravitational wave turbulence in the approximation of strongly local interactions. We show analytically that the model equations satisfy the conse
Via a sequence of approximations of the Lagrangian in Hamiltons principle for dispersive nonlinear gravity waves we derive a hierarchy of Hamiltonian models for describing wave-current interaction (WCI) in nonlinear dispersive wave dynamics on free s