ﻻ يوجد ملخص باللغة العربية
We consider a diatomic chain characterized by a cubic anharmonic potential. After diagonalizing the harmonic case, we study in the new canonical variables, the nonlinear interactions between the acoustical and optical branches of the dispersion relation. Using the {it wave turbulence} approach, we formally derive two coupled wave kinetic equations, each describing the evolution of the wave action spectral density associated to each branch. An $H$-theorem shows that there exist an irreversible transfer of energy that leads to an equilibrium solution characterized by the equipartition of energy in the new variables. While in the monoatomic cubic chain, in the large box limit, the main nonlinear transfer mechanism is based on four-wave resonant interactions, the diatomic one is ruled by a three wave resonant process (two acoustical and one optical wave): thermalization happens on shorter time scale for the diatomic chain with respect to the standard chain. Resonances are possible only if the ratio between the heavy and light masses is less than 3. Numerical simulations of the deterministic equations support our theoretical findings.
We generalize the rejection-free event-chain Monte Carlo algorithm from many particle systems with pairwise interactions to systems with arbitrary three- or many-particle interactions. We introduce generalized lifting probabilities between particles
The Sagdeev-Zaslavski (SZ) equation for wave turbulence is analytically derived, both in terms of generating function and of multi-point pdf, for weakly interacting waves with initial random phases. When also initial amplitudes are random, the one-po
The nonlinear dynamics of waves at the sea surface is believed to be ruled by the Weak Turbulence framework. In order to investigate the nonlinear coupling among gravity surface waves, we developed an experiment in the Coriolis facility which is a 13
In this paper, we discuss the emergence of extreme events in a parametrically driven non-polynomial mechanical system with a velocity-dependent potential. We confirm the occurrence of extreme events from the probability distribution function of the p
Due to one of the most representative contributions to the energy in diatomic molecules being the vibrational, we consider the generalized Morse potential (GMP) as one of the typical potential of interaction for one-dimensional microscopic systems, w